Dawn Of The Tripteron 3D Printer

Cartesian 3D printers were the original. Then delta printers came along, and they were pretty cool too. Now, you can add tripteron printers to the mix.  The Tripteron is an odd mix of Cartesian and delta. The system was invented at the robotics laboratory at Université Laval in Quebec, Canada. The team who created it say that it is “isotropic and fully decoupled, i.e. each of the actuators is controlling one Cartesian degree of freedom, independently from the others.” This means that driving the bot will be almost as simple as driving a standard X/Y/Z Cartesian printer. The corollary to that are of course delta robots, which follow a whole different set of kinematic rules.

trioptera-renderA few people have experimented with Tripteron printers over the years, but as far as we can see, no one has ever demonstrated a working model. Enter [Apsu], who showed up about a month ago. She started a post on the RepRap forums discussing her particular design. She works fast, and has now demonstrated a working prototype making prints. Sure they’re just calibration cubes, but this is a huge step forward.

[Apsu] admits that she still has a way to go in her research — especially improving the arm and joint implementation. However, she’s quite pleased that her creation has gone from a collection of parts to a new type 3D printer. We are too — and we can’t wait to see the next iteration!

Continue reading “Dawn Of The Tripteron 3D Printer”

Spinning 3D POV Display: A High School Term Project

If you are a fan of sci-fi shows you’ll be used to volumetric 3D displays as something that’s going to be really awesome at some distant point in the future. It’s been about forty years since a virtual 3D [Princess Leia] was projected to Star Wars fans from [R2D2]’s not-quite-a-belly-button, while in the real world it’s still a technology with some way to go. We’ve seen LED cubes, spinning arrays, and lasers projected onto spinning disks, but nothing yet to give us that Wow! signaling that the technology has truly arrived.

We are starting to see these displays move from the high-end research lab into the realm of hackers and makers though, and the project we have for you here is a fantastic example. [Balduin Dettling] has created a spinning LED display using multiple sticks of addressable LEDs mounted on a rotor, and driven by a Teensy 3.1. What makes this all the more remarkable is that he’s a secondary school student at a Gymnasium school in Germany (think British grammar school or American prep school).

volumetric-pov-display-built-by-high-schooler-led-boardsThere are 480 LEDs in his display, and he addresses them through TLC5927 shift registers. Synchronisation is provided by a Hall-effect sensor and magnet to detect the start of each rotation, and the Teensy adjusts its pixel rate based on that timing. He’s provided extremely comprehensive documentation with code and construction details in the GitHub repository, including a whitepaper in English worth digging into. He also posted the two videos we’ve given you below the break.

What were you building in High School? Did it involve circuit design, mechanical fabrication, firmware, and documentation? This is an impressive set of skills for such a young hacker, and the type of education we like to see available to those interested in a career in engineering.

Continue reading “Spinning 3D POV Display: A High School Term Project”

Star Trek Phone Dock Might As Well Be From Picard’s Night Stand

Star Trek is often credited with helping spur the development of technologies we have today — the go-to example being cell phones. When a Star Trek April Fool’s product inspires a maker to build the real thing? Well, that seems par for the course. [MS3FGX] decided to make it so. The 3D printed Star Trek-themed phone dock acts as a Bluetooth speaker and white noise generator. The result is shown off in the video below and equals the special effects you expect to find on the silver screen.

Taking a few liberties from the product it’s based on — which was much larger and had embedded screens — makes [MS3FGX]’s version a little more practical. Two industrial toggle switches control a tech cube nightlight and the internal Bluetooth speaker. An NFC tag behind the phone dock launches the pre-installed LCARS UI app and turns on the phone’s Bluetooth. Despite being a challenge for [MS3FGX] to design, the end product seems to work exactly as intended.

Continue reading “Star Trek Phone Dock Might As Well Be From Picard’s Night Stand”

Super-Sizing Leaf Collection; Hackers Doing Yardwork

For many parts of the world, the great raking has begun as deciduous trees in temperate zones drop their leaves. Of course not everyone can abide the simple yet laborious process of manual raking and so they look to technology. You can buy a handheld leaf vacuum, a pull-behind leaf sweeper, or a mower attachment that lifts leaves into hoppers. [Lou] has the latter, but it’s way too small for his taste so he super-sized his leaf collecting hardware.

The hard part of leaf collection has already been solved for [Lou]. The riding lawnmower lifts the leaves and propels them through an angled pipe into three hopper bags which we think total 9 bushels (roughly 80 gallons or 300 liters). That sounds like a lot, but anyone who has recently cleared leaves will attest that they will fill up in no time.

[Lou] builds a light-weigh 4-foot cube covered in deer netting to super-size his hopper to a whopping 51 bushels (475 gallons or 1800 liters)! His first attempt uses a pipe that falls too short to fill leaves to the top, but his final product adds longer ductwork and hits the mark perfectly.

Gardeners everywhere should be salivating right now. Leaf mulch is one of the best things you can put on your garden in the spring. Although [Lou] designed his hopper to be emptied by leaf-blower, adapting this to set the full hopper in an out-of-the-way space would help them breakdown over the winter — turning them into planter’s gold by springtime.

Continue reading “Super-Sizing Leaf Collection; Hackers Doing Yardwork”

Vote With Your Feet

Gamifying life is silly, fun, and a great way to interact with those strangers who you pass everyday. Here’s one example that might just pop up along your next walk to work. It’s a way to take a very unscientific straw poll on any topic — you won’t even have to use your hands to cast a ballot.

A group called [Vote With Your Feet] has come up with a novel way of casting ballots. Simply walk down the sidewalk and through one of two doorways, each labeled with either side of a dichotomy. Each doorway is able to count the number of people that pass through it, so any issue imaginable can be polled. They already did vim vs emacs (59 to 27),  and we’d like to see Keynes vs Hayek, or even Ovaltine vs Nesquik. Users can send the machine new issues for the masses to vote on, so the entertainment is quite literally limited only by your imagination.

thumbThe physical build is well documented. Since this is used outside, the choice of a flipdot display (of course always fun to play with) is perfect for this high-contrast in any level of light. Each doorway has a break-beam sensor which is monitored by the Raspberry Pi driving the overhead display (here’s code for it all if you want to dig in).

The point of this art installation like this is to get people to interact with their environment in a novel way, which this project has accomplished exceptionally well. In 3 days, they registered over 10,000 votes which are viewable on their website. If you have a project in mind that calls for data visualization you might want to keep this in your back pocket.

We have also seen other ways that doorways can count people outside of voting, if you’re looking for any inspiration yourself.

Icehat on a Raspberry Pi Zero

Give Your RPi A Cool FPGA Hat

Need additional, custom IO for your Raspberry Pi? Adding an FPGA is a logical way to expand your IO, and allow for high speed digital interfaces. [Eric Brombaugh]’s Icehat adds a Lattice iCE5LP4K-SG48 FPGA in a package that fits neatly on top of the Raspberry Pi Zero. It also provides a few LEDs and Digilent compatible PMOD connectors for adding peripherals. The FPGA costs about six bucks, so this is one cheap FPGA board.

The FPGA has one time programmable memory, but can also be programmed over SPI. This allows the host Pi to flash the FGPA with the latest bitstream at boot. Sadly, this particular device is not supported by the open source Icestorm toolchain. Instead, you’ll need Lattice’s iCEcube2 design software. Fortunately, this chip is supported by the free license.

Icehat is an open source hardware design, but also includes a software application for flashing a bitstream to the FPGA from the Pi and an example application to get you started. All the relevant sources can be found on Github, and the PCB is available on OSHPark.

While this isn’t the first pairing of a Raspberry Pi and FPGA we’ve seen, it is quite possibly the smallest, and can be built by hand at a low cost.

After The Prize: A Libre Space Foundation

The Hackaday Prize is the greatest hardware build-off on the planet, and with that comes some spectacular prizes. For the inaugural Hackaday Prize in 2014, the top prize was $196,418. That’s a handsome sum, and with that, the right hardware, and enough time, anything is possible.

The winners of the first Hackaday Prize was the SatNOGs project. The SatNOGs project itself is very innovative and very clever; it’s a global network of satellite ground stations for amateur cubesats. This, in itself, is a huge deal. If you’re part of a student team, non-profit, or other organization that operates a cubesat, you only have access to that satellite a few minutes every day — whenever it’s in the sky, basically. SatNOGs is a project to put directional, tracking antennas everywhere on Earth, all connected to the Internet. This is a project that gives global ground station coverage to every amateur-built cubesat.

It’s been two years since SatNOGs won the Hackaday Prize, so how are they doing now? I caught up with some of the midwest reps of SatNOGs at this year’s Hamvention, and the project is doing very well. The steerable antenna mount designed by the SatNOGs project is fantastic, some of the Earth stations are seeing a lot of use, and the network is growing.

Two years is a long time, and since then SatNOGs has evolved into the Libre Space Foundation, a not-for-profit foundation with a mission to promote, advance and develop free and open source technologies and knowledge for space.

The premier project for the Libre Space Foundation is the UPSat, the first Open Source satellite ever launched. For the last two years, this is what the Libre Space Foundation has been working on, and soon this satellite will be orbiting the Earth. The satellite itself was recently delivered, and next month it will be launched to the International Space Station aboard a Cygnus spacecraft. After that, it will be deployed to low Earth orbit from Nanoracks’ deployment platform on the station.

This is truly an amazing project. SatNOGs brought a network of ground stations to amateur cubesats orbiting the Earth, and now the Libre Space Foundation will put an Open Source satellite into low Earth orbit. All the documentation is available on Github, and this is the best the open hardware movement has to offer. We’re proud to have SatNOGs and the Libre Space Foundation proving that Open Hardware can change the world, and we can only hope this year’s winner of the Hackaday Prize has such an impact.