Teardown: 3D Printed Space Shuttle Lamp

Since the very beginning, the prevailing wisdom regarding consumer desktop 3D printers was that they were excellent tools for producing prototypes or one-off creations, but anything more than that was simply asking too much. After all, they were too slow, expensive, and finicky to be useful in a production setting. Once you needed more than a few copies of a plastic part, you were better off biting the bullet and moving over to injection molding.

But of course, things have changed a lot since then. Who could have imagined that one day you’d be able to buy five 3D printers for the cost of the crappiest Harbor Freight mini lathe? Modern 3D printers aren’t just cheaper either, they’re also more reliable and produce higher quality parts. Plus with software like OctoPrint, managing them is a breeze. Today, setting up a small print farm and affordably producing parts in mass quantities is well within the means of the average hobbyist.

Space shuttle lamp
Flickering LEDs provide a sense of motion

So perhaps I shouldn’t have been so surprised when I started seeing listings for these 3D printed rocket lamps popping up on eBay. Available from various sellers at a wide array of price points depending on how long you’re willing to wait for shipping, the lamps come in several shapes and sizes, and usually feature either the Space Shuttle or mighty Saturn V perched atop a “exhaust plume” of white PLA plastic. With a few orange LEDs blinking away on the inside, the lamp promises to produce an impressive flame effect that will delight space enthusiasts both young and old.

As a space enthusiast that fits somewhere in between those extremes, I decided it was worth risking $30 USD to see what one of these things looked like in real life. After waiting a month, a crushed up box arrived at my door which I was positive would contain a tiny mangled version of the majestic lamp I was promised — like the sad excuse for a hamburger that McBurgerLand actually gives you compared to what they advertise on TV.

But in person, it really does look fantastic. Using internally lit 3D printed structures to simulate smoke and flame is something we’ve seen done in the DIY scene, but pulling it off in a comparatively cheap production piece is impressive enough that I thought it deserved a closer look.

Now it’s always been my opinion that the best way to see how something was built is to take it apart, so I’ll admit that the following deviates a bit from the rest of the teardowns in this series. There’s no great mystery around flickering a couple LEDs among Hackaday readers, so we already know the electronics will be simplistic in the extreme. This time around the interesting part isn’t what’s on the inside, but how the object itself was produced in the first place.

Continue reading “Teardown: 3D Printed Space Shuttle Lamp”

Oh, Holey Light

We consider ourselves well-versed when it comes to the technical literature plastered on hardware store parts. Acronyms don’t frighten us, and our Google-fu is strong enough to overcome most mysteries. One bit of dark magic we didn’t understand was the gobbledygook on LED lamps. Wattage is easy and color temperature made sense because it corresponds with warm and cool colors, but Color Rendering Index (CRI) sounds like deep magic. Of course, some folks understand these terms so thoroughly that they can teach the rest of us, like [Jon] and [Kevin], who are building a light controller that corrects inadequacies in cheap lamps by installing several lamps into one unit.

We learned a lot by reading their logs, which are like the Cliff Notes from a lighting engineer’s textbook, but we’ll leave it as an exercise for the students to read through. Their project uses precise light sensors to measure the “flavor” of light coming off cheap lamps so you can mix up a pleasing ratio. In some ways, they are copying the effects of incandescent bulbs, which emit light relatively evenly across the visible light spectrum, right into the infrared. Unfortunately, cheap LEDs have holes in their spectrum coverage, and a Warm White unit has different gaps compared with Daylight, but combining them just right gives a rich output, without breaking the bank.

Animated Pixel Lamp Is A Must For Any Chiptuner’s Bedroom

Lamps are quite often simple things, designed to light an area and perhaps add a touch of style to a room. Of course, it’s 2019 now, and we don’t need to settle for just that. We can have wildly colored animated lamps if we want to! (French Youtube link, embedded below.)

The lamp in question is the work of [Heliox], who knows her way around an LED or two (hundred). In this build, a string of WS2812 addressable RGB LEDs are hooked up to an Arduino Mega brain. The LEDs are fitted into a round lamp body, with a rectangular diffuser for each one. This creates an attractive pixellated effect and gives the animations a charming 8-bit quality. A thin outer shell is 3D printed in white plastic to further diffuse the light. The top of the lamp rotates an internal potentiometer to control mode selection. There’s also a brightness knob on the bottom if things get a touch too intense.

It’s a tidy build that uses 3D printing and addressable LEDs to quickly and easily create a lamp with a fun retro aesthetic. We could imagine this making a great piece for a hip sitcom apartment. We fully expect to see similar lamps on sale in the next couple of years. Video after the break.

Continue reading “Animated Pixel Lamp Is A Must For Any Chiptuner’s Bedroom”

Weather matrix lamp

Pi Weather Lamp Puts Lava Lamps To Shame

Representing the weather on an LED lamp in a manner that’s easy to interpret can be difficult, but [Gosse Adema]’s weather/matrix lamp makes it not only obvious what the weather is but also offers a very attractive display. For rain, drops of light move downward, and for wind, sideways. The temperature is shown using a range of colors from red to blue, and since he is situated in the Netherlands he needed snow, which he shows as white. A rainy, windy day has lights moving both down and sideways with temperature information as the background.

Weather matrix lamp

To implement it he mounted LED strips inside a 3D printed cylinder with reflectors for each LED, all of which fitted into a glass cylinder taken from another lamp purchased online. The brains of it is a Raspberry Pi Zero W housed in the bottom along with a fan. Both the LEDs and the fan are controlled by the Pi. He took a lot of care with power management, first calculating the current that the LEDs would draw, and then writing Python code to limit that draw. However upon measurement, the current draw was much lower than expected and so he resized the power supply appropriately. He also took care to correctly size the wires and properly distribute the power with a specially made power distribution board. Overall, we really like the thorough job he’s done.

But then again, what’s not to like about [Gosse]’s projects. In the area of lighting, he’s dazzled us with WiFi controlled Christmas tree ornaments, but he’s also delighted us with a Prusa i3 based LEGO 3D printer on which he printed LEGO parts and then made a special extruder for printing chocolate.

Oak Lamp Glows Bright

Looking for a way to spruce up your place with a touch of rustic-future-deco? Why not embed LEDs somewhere they were never designed for? [Callosciurini] had a nice chunk of oak and decided to turn it into a lamp.

He was inspired by a similar lamp that retails for over $1,000, so he figured he would make his own instead (business idea people?). The oak is a solid chunk measuring 40x40x45cm and what he did was route out an angled channel across all faces of the cube. This allowed him to installed a simple LED strip inside the groove — then he filled it with an epoxy/paint mix to give it that milky glow.

To finish it off he sanded the entire thing multiple times, oiled the wood, and sanded it again with a very fine grit. The result is pretty awesome.

Now imagine what you could do design-wise if you could fold wood to make a lamp? Well with this custom wood-folding saw-blade, the sky is the limit!

[via r/DIY]

DNA Lamp

DNA Lamp Adds Some Science To Your Room

Lava lamps had their time, but that time is over. Perhaps a spinning, glowing, DNA helix style lamp will take their place?

Inspired by the ever mesmerizing DNA helix, a member of the eLab hackerspace decided to try making it into a lamp. It’s almost entirely 3D printed, with the helix made out of glow in the dark filament.  A series of UV LEDs fade in and out as a small geared motor from a microwave turntable spin the helix round and around.

[João Duarte] designed the assembly using TinkerCAD and has shared all the files on the Instructable in case you want to make one yourself. It is a lot of printing though, so you might want to recruit your own hackerspace’s 3D printer to do some of the work. He ended up using his own Prusa i3 as well as the LulzBot TAZ4 from the space to speed things up.

Continue reading “DNA Lamp Adds Some Science To Your Room”

USB Powered CD Lamp

[Artificial Intelligence] has made a desk lamp out of parts he had kicking around in his parts bin. Most recognizable are the 4 CDs that make up the base and the shade. To start this project, [Artificial Intelligence] sketched out a circular pattern on one of the CDs and marked 7 locations where the LEDs will be. Holes were drilled at those marked locations, the LEDs inserted and hot glued into place. Each LED has its own current limiting resistor soldered in a series configuration.

[Artificial Intelligence] mentions the resistor value was determined by a nice LED resistor calculator he found online, ledcalc.com. Then each LED/resistor combo was wired together in a parallel configuration and covered up by another CD to clean up the look and protect the wiring.

The base, like the top, is also made from 2 CDs, but this time there are 5 AA batteries underneath the CDs. These batteries don’t power the lamp, they are only used as a counterweight to prevent the lamp from tipping over. A USB cord runs to the lamp base, goes through an on/off switch and then up a pair of large-gauge solid core wire before connecting to the LED’s in the top of the lamp. The thick solid core wire acts as the only support for the lamp shade and LEDs. Since it is still just wire, the lamp can be bent to shine light in the most convenient position, as any good desk lamp would be capable of.