Outline 2022: Everyone Should Go To A Demo Party

The community of Hackaday readers is diverse and talented, and supplies us with plenty of motivation, feedback, knowledge, and of course cool stuff to show you. There are many interest streams within it, but it’s safe to say that we’re more directed towards the hardware scene here. One of those parallel streams which has much overlap is the demoscene, that area in which programming, art, and music come together and push computer hardware to the limit of its abilities in pursuit of the most eye-catching works. I took a road trip with a friend to Outline, a small demo party held on a farm in the eastern Netherlands, to take a look at the world of demos up-close as a hardware-focused outsider.

Like A Hacker Camp, But The Music’s Better

A still from Thrive, a 256-byte demo for the TIC-80 fantasy console.
A still from Thrive, a 256 byte demo for the TIC-80 fantasy console.

If I wanted to sum up the flavour of Outline, I’d describe it as very similar to a small hacker camp, but with better music and partying. The hackerspaces are replaced by demo groups and awesome graphics take the place of robots and electronics, but the vibe of people with a passionate interest in the low-level understanding of technology is exactly the same. Even some of the same faces make an appearance. On the benches sit modern high-spec PCs alongside classic consoles and microcomputers, on the projector screen are live coding shaders or some of the most recognisable demos past and present, and in the air is an eclectic mix of live-DJ EDM and chiptunes.

As an outsider at a first demoscene event it’s difficult to appreciate the work from a comparative perspective, while like most of us I’m familiar with quite a few demos that have become popular I’m not well-equipped enough to talk about the code and techniques behind them But I can run through the various sections of the competition, and since everything is online I can link to a few of them. The competition is split up into several sections, which are loosely for all-out technology-no-object demos, space-limited 256 byte and 128 byte demos, and old-school demos for retrocomputing hardware. Each is a test of the programmer’s skill in fitting the most into the least of resources, and for those who appreciate such things it’s the cleverness of the technique which produces the demo that’s as much a draw as the look of the thing. I don’t think I have ever exercised such mastery over any of the computers I have owned. So browse the entries, and marvel at their ingenuity. My personal aesthetic favourites were Thrive by [Agenda] for the TIC-80 fantasy console and It’s about time by [Guideline] for Windows, but you may have different tastes. 

Don’t Forget The Hardware

Mine Storm 4D, on a lenticular holographic display.
Mine Storm 4D, on a lenticular holographic display.

Beyond the atmosphere and the demos themselves, there was a bit of hardware for the retrocomputer enthusiast. The Atari Falcon and Jaguar were neither destined to set the world on fire when they appeared, but there they were for those of us who drooled over them back in the day to lust for once more.

If the original hardware wasn’t enough then there was some newly minted retrocomputing hardware making a showing, with a couple of minimig Amiga FPGA boards showing Workbench. Star of the hardware show though went to Mine Storm 4D, a version of the classic Vectrex game Mine Storm running on a PC, for the Looking Glass Factory holographic portrait display. With my visual superpower I didn’t quite get a 3D effect, but I definitely got the holographic effect when moving my head.

Having never been to a demo party I didn’t know quite what to expect, but I can safely say I had a fantastic time, saw a lot of really cool stuff, and made some friends along the way. If you’ve never been to a demo party because it’s not quite your scene then all I can say is that you should give it a go. Every hardware hacker should go to a demo party!

Aerial Robotics Hack Chat

Join us on Wednesday, June 8 at noon Pacific for the Aerial Robotics Hack Chat with Nick Rehm!

When it comes to robots, especially ones that need to achieve some degree of autonomy, the more constrained the environment they work in, the easier it is for them to deal with the world. An industrial arm tethered next to a production line, for example, only has to worry about positioning its tool within its work envelope. The problems mount up for something like an autonomous car, though, which needs to deal with the world in two — or perhaps two and a half — dimensions.

But what about adding a third dimension? That’s the realm that aerial robots have to live and work in, and it’s where the problems get really interesting. Not only are there hardly any constraints to movement, but you’ve also got to deal with the problems of aerodynamic forces, navigation in space, and control systems that need to respond to the slightest of perturbations without overcompensating.

join-hack-chatThe atmosphere is a tough place to make a living, and dealing with the problems of aerial robotics has kept Nick Rehm occupied for many years as a hobbyist, and more recently as an aerospace engineer at Johns Hopkins Applied Physics Laboratory. Nick has spent his time away from the office solving the problems of autonomous flight, including detection and avoidance of mid-air collisions, development of vertical take-off and landing (VTOL) and fixed-wing aircraft, and even ground-effect aircraft. He’ll drop by the Hack Chat to discuss the problems of aerial robots and the challenges of unconventional aviation, and help us figure out how to deal with the third dimension.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, June 8 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Continue reading “Aerial Robotics Hack Chat”

Picture of the modification as it's being performed, with an extra chip stacked on top of the original, extra magnet wire connection going to the chip select line pin

Original XBox V1.6 RAM Upgrade Stacks TQFP Chips

RAM upgrades for the original XBox have been a popular mod — you could relatively easily bump your RAM from 64MB to 128MB. While it wouldn’t give you any benefit in most games written to expect 64MB, it does help with emulators, game development, and running alternative OSes like Linux. The XBox PCB always had footprints for extra RAM chips, so RAM upgrades were simple – just get some new RAM ICs and solder them onto the board. However, in the hardware revision 1.6, these footprints were removed, and RAM upgrades on v1.6 were always considered impossible.

[Prehistoricman] brings a mod that makes RAM upgrades on v1.6 possible using an old trick from the early days of home computers. He’s stacking new RAM chips on top of the old ones and soldering them on in parallel. The overwhelming majority of the RAM lines are shared between chips, which is what makes this mod possible – all you need to connect to the extra chips is magnet wire for extra RAM chip select lines, which are, thankfully, still available on the board. He shares a tutorial with plenty of illustrations, so it should be easier for you to perform this mod, in case you’re stuck with a newer console that doesn’t have the RAM chip footprints left onboard.

We just covered an original XBox softmodding tutorial, so this is as timely as ever! If you’re looking to read about the 128MB mod, this is a good place to start.

We thank [DjBiohazard] for sharing this with us!

Laser Propulsion Could Satisfy Our Spacecraft’s Need For Speed

There are many wonderful places we’d like to visit in the universe, and probably untold numbers more that we haven’t even seen or heard of yet. Unfortunately…they’re all so darn far away. A best-case-scenario trip to Mars takes around six months with present technology, meanwhile, if you want to visit Alpha Centauri it’s a whole four lightyears away!

When it comes to crossing these great distances, conventional chemical rocket technology simply doesn’t cut the mustard. As it turns out though, lasers could hold the key to cutting down travel times in space!

Continue reading “Laser Propulsion Could Satisfy Our Spacecraft’s Need For Speed”

This $4 Desalination Device Provides Drinking Water For The Whole Family

Researchers at MIT and in China have improved the old-fashioned solar still with a new inexpensive device that harnesses the sun to remove salt from water. Traditionally, these kinds of systems use a wick to draw water, but once the wick becomes fouled with salt, the device needs cleaning or other maintenance. Not exactly what you want in a survival situation. You can read the paper in Nature if you want more details.

The key to this new technique is black paint and polyurethane with 2.5-millimeter holes drilled in it. The idea is that warmer water above the insulating medium causes the salt to concentrate in the cooler water beneath the insulator allowing efficient vaporization of the water.  As the water evaporates, it causes the salt concentration at the top to rise, which then sinks due to the higher density and lower-concentration salt water rises to the top to evaporate.

Because the materials are commonplace, the team says a one-meter-square system costs about $4 to produce. A system that size could provide a family’s daily drinking water.

So far, the prototype system has worked in the lab for at least a week without accumulating salt. The next challenge is to scale it to something more practical, but due to the low cost and simplicity of the system, it seems it would be easy enough to make that happen or to reproduce the device for your own testing.

Desalination is a problem you can approach from many different angles. You can also harvest clean water from fog, something else that started at MIT.

Bug Eliminator Zaps With A Laser

Mosquitoes tend to be seen as an almost universal negative, at least in the lives of humans. While they serve as a food source for plenty of other animals and may even pollinate some plants, they also carry diseases like malaria and Zika, not to mention the itchy bites. Various mosquito deterrents have been invented over the years to solve some of these problems, but one of the more interesting ones is this project by [Ildaron] which attempts to build a mosquito-tracking laser.

The device uses a neural learning algorithm to identify mosquitoes flying nearby. Once a mosquito is detected, a laser is aimed at it and activated in order to “thermally neutralize” the pest. The control system as well as the neural network and machine learning are hosted on a Raspberry Pi and Jetson Nano which give it plenty of computing power. The only major downside with this specific project is that the high-powered laser can be harmful to humans as well.

Ideally, a market for devices like these would bring the price down, perhaps even through the use of something like an ASIC specifically developed for these mosquito-targeting machines. In the meantime, [Ildaron] has made this project available for replication on his GitHub page. We have also seen similar builds before which are effective against non-flying insects, so it seems like only a matter of time before there is more widespread adoption — either that or Judgement day!

Continue reading “Bug Eliminator Zaps With A Laser”

The SoM on an evaluation board, with two LEDs shining, one USB-C cable connected for power and another plugged into the OTG port

New Part Day: X1501 Makes For A Tiny And Open Linux SoM

Ever wanted to run Linux in an exceptionally small footprint? Then [Reimu NotMoe] from [SudoMaker] has something for you! She’s found an unbelievably small Linux-able chip in BGA, and designed a self-contained tiny SoM (System on Module) breakout with power management and castellated pads. This breakout contains everything you need to have Linux in a 16x16x2mm footprint. For the reference, a 16mm square is the size of the CPU on a Raspberry Pi.

This board isn’t just tiny, it’s also well-thought-out, helping you put the BGA-packaged Ingenic X1501 anywhere with minimal effort. With castellated pads, it’s easy to hand-solder this SoM for development and reflow for production. An onboard switching regulator works from 6V down to as low as 3V, making this a viable battery-powered Linux option. It can even give you up to 3.3V/1A for all your external devices.

The coolest part yet – the X1501 is surprisingly friendly and NDA-free. The datasheets are up for grabs, there are no “CONFIDENTIAL” watermarks – you get a proper 730-page PDF. Thanks to this openness, the X1501 can run mainline Linux with minimal changes, with most of the peripherals already supported. Plus, there’s Efuse-based Secure Boot if your software needs to be protected from cloning.

More after the break…

Continue reading “New Part Day: X1501 Makes For A Tiny And Open Linux SoM”