Game boy with custom cartridge mounted on car dashboard

A Game Boy Speedometer, Just Because You Can

From a practical standpoint, [John] may be correct that his recent creation is the “world’s worst digital dash”, but we’re still oddly enamored with the idea of using a Nintendo Game Boy as a digital speedometer. Pulling it off meant interfacing the handheld with the vehicle’s CAN bus system, so whether you’re into retro gaming or car hacking, this project has something to offer.

Showing real-time vehicle speed on the Game Boy sounds like it should be relatively easy, but the iconic game system wasn’t exactly built for such a task. Its 2 MHz CPU and 160×144 pixel dot-matrix screen were every kid’s dream in 1989, but using it as a car dashboard is pushing it. To bridge that gap, [John] designed two custom circuit boards. One interfaces with the Game Boy, intercepting its memory requests and feeding it data from a microcontroller. The other processes the CAN bus signals, translating speed information into a form the Game Boy can display. [John] used inexpensive tools and software to read the CAN bus data, and used GBDK-2020 to write the software in C. His video goes in great detail on how to do this.

Months of work have gone into decoding the Game Boy’s data bus and creating a schematic for the interface board. Tricking the Game Boy into thinking it was loading a game, while actually displaying incoming speed data. The screen’s low resolution and slow refresh rate rendered it barely readable in a moving vehicle. But [John]’s goal wasn’t practicality — it was just proving it could be done.

Want to dive deep into the Game Boy?  Have you seen the Ultimate Game Boy talk?

Continue reading “A Game Boy Speedometer, Just Because You Can”

Self Driving Like It’s 1993

In a stunning example of the Baader Meinhof effect, we’ve recently heard several times this week about events like the “carbage run.” That is, a motoring event where you can only buy some garbage car to compete. In the case of [Robbe Derks], the idea was to take a six-day journey to the polar circle in a car. But not just any car. It had to be at least 20 years old and cost less than €1000. That wasn’t hard enough for [Robbe] and friends. They also decided to make the car self-driving.

If you have a car that is new enough, this might not be as hard as it sounds. The OpenPilot project adds L2 self-driving features to about 275 car models. But probably not a 20-year-old junker or, in particular, a 1993 Volvo 940. [Robbe] took up the challenge and is doing a series of blog posts covering how it all worked.

Continue reading “Self Driving Like It’s 1993”

A black and white line drawing of a vehicle interior showing the dashboard and. steering wheel. On the infotainment screen, the words "Selected Ad" are emblazoned in large letters.

Will You Need Ad Block For Your Car?

The modern web has become difficult to navigate without ad blocking software. Ford now has a patent application that would bring the ads we hate to your vehicle’s infotainment system. [via PCMag]

Ford has already replied to criticism with the usual corporate spiel of patents not necessarily being the direction the company will go with future products, but it’s hard to imagine that other automakers aren’t planning similar systems since they’re already charging extra for heated seats, EV range, and performance. Bringing ads to the captive audience of your personal vehicle and targeting them based on listening to the occupants’ conversations would be a new low. Maybe you’ll be able to pay an extra $100/month for the “ad-free experience.”

Instead of taking advantage of the EV transition to make better, simpler cars, automakers are using their highly-computerized nature to extract more from you and provide less when you drive off the lot. Enshittification has come for the automobile. Perhaps auto executives should read A Few Reasonable Rules for the Responsible Use of New Technology?

The first step of blocking these ads will likely be jailbraking the infotainment system. If that wasn’t enough, locking features behind a paywall has come for wheelchairs too.

Boss Byproducts: Fordites Are Pieces Of American History

Some of the neatest products are made from the byproducts of other industries. Take petroleum jelly, for example. Its inventor, Robert Chesebrough, a chemist from New York, came upon his idea while visiting the oil fields of Titusville, Pennsylvania in 1859. It took him ten years to perfect his formula, but the product has been a household staple ever since. Chesebrough so believed in Vaseline that he ingested a spoonful of it every day, and attributed his 96-year longevity to doing so.

Well, some byproducts can simply be beautiful, or at least interesting. On that note, welcome to a new series called Boss Byproducts. We recently ran an article about a laser-engraved painting technique that is similar to the production of Fordite. I had never heard of Fordite, but as soon as I found out what it was, I had to have some. So, here we go!

Continue reading “Boss Byproducts: Fordites Are Pieces Of American History”

RC Car Gets Force Feedback Steering

Remote-controlled cars can get incredibly fast and complex (and expensive) the farther into the hobby you get. So much so that a lot of things that are missing from the experience of driving a real car start to make a meaningful impact. [Indeterminate Design] has a few cars like this which are so fast that it becomes difficult to react to their behavior fast enough through sight alone. To help solve this problem and bridge the gap between the experience of driving a real car and an RC one, he’s added force feedback steering to the car’s remote control.

The first thing to tackle is the data throughput required to get a system like this working wirelessly. Relying heavily on the two cores in each of a pair of ESP32s, along with a long-range, high-speed wireless communications protocol called ESP-NOW, enough data from the car can be sent to make this possible but it does rely on precise timing to avoid jitter in the steering wheel. Some filtering is required as well, but with the small size of everything in this build it’s also a challenge not to filter out all of the important high-frequency forces. With the code written, [Indeterminate Design] turned to the 3D printer to build the prototype controller with built-in motors to provide the haptic feedback.

The other half of the project involves sensing the forces in the RC car which will then get sent back to the remote. After experimenting with a mathematical model to avoid having to source expensive parts and finding himself at a deadend with that method, eventually a bi-directional load cell was placed inside the steering mechanism which solved this problem. With all of these pieces working together, [Indeterminate Design] has a working force feedback steering mechanism which allows him to feel bumps, understeer, and other sensations, especially while doing things like drifting or driving through grass, that would be otherwise unavailable to drivers of RC cars. The only thing we could think of to bring this even more into realistic simulation territory would be to add something like a first-person view like high-speed drones often have.

Continue reading “RC Car Gets Force Feedback Steering”

Car Becomes A Massive Bubble Machine

You’ve probably seen street performers or family members making giant bubbles at some point in your life. But what if you could go ever bigger…even approaching a bubble of infinite length? That’s precisely what [Engineezy] tried to do.

The common technique behind blowing big bubbles involves attaching a thick rope to two sticks, then dipping the sticks in bubble fluid. The two sticks can then be spread apart to act as a big triangular bubble wand to create massive bubbles.

So the idea here to create a giant bubble-blowing frame using the same technique, continually feed it with bubble fluid, and stick it on top of a car. Spread the wings of the bubble wand, and watch the bubble grow. Oh, and this setup uses special bubble fluid—made by mixing soap, water, and veterinary J-Lube in specific ratios. Feeding the car-mounted wand with fluid was achieved by tubing delivering a continuous flow. Early small-scale attempts created wild 25 foot bubbles, while the car version made one over 50 feet long. Not infinite, but very cool.

As it turns out, the science of bubbles is deep and interesting.

Continue reading “Car Becomes A Massive Bubble Machine”

Toyota Heater Switches Learn New Tricks

The look, the feel, the sound — there are few things more satisfying in this world than a nice switch. If you’re putting together a device that you plan on using frequently, outfitting it with high-quality switches is one of those things that’s worth the extra cost and effort.

So we understand completely why [STR-Alorman] went to such great lengths to get the aftermarket seat heaters he purchased working with the gorgeous switches Toyota used in the 2006 4Runner. That might not sound like the kind of thing that would involve reverse engineering hardware, creating a custom PCB, or writing a bit of code to tie it all together. But of course, when working on even a halfway modern automobile, it seems nothing is ever easy.

The process started with opening up the original Toyota switches and figuring out how they work. The six-pin units have a lot going on internally, with a toggle, a rheostat, and multiple lights packed into each one. Toyota has some pretty good documentation, but it still took some practical testing to distill it down into something a bit more manageable. The resulting KiCad symbol for the switch helps explain what’s happening inside, and [STR-Alorman] has provided a chart that attributes each detent on the knob with the measured resistance.

But understanding how the switches worked was only half the battle. The aftermarket seat heaters were only designed to work with simple toggles, so [STR-Alorman] had to develop a controller that could interface with the Toyota switches and convince the heaters to produce the desired result. The custom PCB hosts a Teensy 3.2 that reads the information from both the left and right seat switches, and uses that to control a pair of beefy MOSFETs. An interesting note here is the use of very slow pulse-width modulation (PWM) used to flip the state of the MOSFET due to the thermal inertia of the heater modules.

We love the effort [STR-Alorman] put into documenting this project, going as far as providing the Toyota part numbers for the switches and the appropriate center-console panel with the appropriate openings to accept them. It’s an excellent resource if you happen to own a 4Runner from this era, and a fascinating read for the rest of us.