A Look Inside A Lemon Of A Race Car

Automotive racing is a grueling endeavor, a test of one’s mental and physical prowess to push an engineered masterpiece to its limit. This is all the more true of 24 hour endurance races where teams tag team to get the most laps of a circuit in over a 24 hour period. The format pushes cars and drivers to the very limit. Doing so on a $500 budget as presented by the 24 hours of Lemons makes this all the more impressive!

Of course, racing on a $500 budget is difficult to say the least. All the expected Fédération Internationale de l’Automobile (FIA) safety requirements are still in place, including roll cage, seats and fire extinguisher. However, brakes, wheels, tires and safety equipment are not factored into the cost of the car, which is good because an FIA racing seat can run well in excess of the budget. Despite the name, most races are twelve to sixteen hours across two days, but 24 hour endurance races are run. The very limiting budget and amateur nature of the event has created a large amount of room for teams to get creative with car restorations and race car builds.

Continue reading “A Look Inside A Lemon Of A Race Car”

Is This The Truck We’ve Been Waiting For?

Imagine a bare-bones electric pickup: it’s the size of an old Hilux, it seats two, and the bed fits a full sheet of plywood. Too good to be true? Wait until you hear that the Slate Pickup is being designed for DIY repairability and modification, and will sell for only $20,000 USD, after American federal tax incentives.

Using the cellphone for infotainment makes for a less expensive product and a very clean dash. (Image: Slate Motors)

There are a few things missing: no infotainment system, for one. Why bother, when almost everyone has a phone and Bluetooth speakers are so cheap? No touch screen in the middle of the dash also means the return of physical controls for the heat and air conditioning.

There is no choice in colors, either. To paraphrase Henry Ford, the Slate comes in any color you want, as long as it’s grey. It’s not something we’d given much though to previously, but apparently painting is a huge added expense for automakers. Instead, the truck’s bodywork is going to be injection molded plastic panels, like an old Saturn coupe. We remember how resilient those body panels were, and think that sounds like a great idea. Injection molding is also a less capital-intensive process to set up than traditional automotive sheet metal stamping, reducing costs further.

That being said, customization is still a big part of the Slate. The company intends to sell DIY vinyl wrap kits, as well as a bolt-on SUV conversion kit which customers could install themselves. The plan is to have a “Slate University” app that would walk owners through maintaining their own automobile, a delightfully novel choice for a modern carmaker.

Continue reading “Is This The Truck We’ve Been Waiting For?”

A bright yellow crew cab pickup is on an unpaved area with snow-capped mountains in the distance. In its bed is a matching camper shell which is somewhat trapezoidal with a smaller semicircular section that can pull out to lengthen the sleeping space of the camper. At the top of the image it says, "Sleeps Two!" with an arrow pointing to the camper shell.

Want A Truck With A Short Bed And A Long Camper Shell?

Camper shells are a time-honored piece of truck gear, but with modern trucks having increasingly vestigial beds, the length of your overnight abode has increasingly shrunk as well. To combat this problem, [Ed’s Garage] built a camper shell that extends once you’ve arrived at your campsite.

[Ed] wanted to keep things relatively low profile while still tall enough to sit up in for convenience, leading to a small bit of the shell peeking over the truck’s roof. To keep the cold Canadian winter out, attention was paid to proper weather sealing around the sliding portion of the shell so that it stays warm and dry inside.

While this would work on any truck, the mains power plugs in the bed of some modern trucks mean that certain glamping conveniences like a heater and projector can be easily powered while you’re in camp. We get to see the camper shell in action at the end of the video where the pros and cons of having your sleeping space also being your storage while en route become apparent.

If you’re looking for something a little less conventional for your camping experience, how about this solar camper or this retro bike camper?

Continue reading “Want A Truck With A Short Bed And A Long Camper Shell?”

A dark warehouse contains a number of large blocky objects. A Tesla Model 3 sedan sits in the center with flames underneath and curling up the side away from the camera. A firefighter on the left side attempts to put out the fire with a fire hose.

UL Investigates The Best Way To Fight EV Fires

While electric vehicles (EVs) are generally less likely to catch fire than their internal combustion counterparts, it does still happen, and firefighters need to be ready. Accordingly, the UL Research Institute is working with reverse engineering experts Munro & Associates to characterize EV fires and find the best way to fight them.

There is currently some debate in the firefighting community over whether it’s better to try to put an EV battery fire out with water or to just let it burn. Research like this means the decision doesn’t have to fall on only anecdotal evidence. Anyone who’s worked in a lab will recognize the mix of exceedingly expensive equipment next to the borderline sketchy rigged up hacks on display, in this case the super nice thermal imagers and a “turkey burner on steroids.” The video goes through some discussion of the previous results with a Chevy Bolt, Hyundai Kona, Ford Mustang Mach E, and then we get to see them light up a Tesla Model 3. This is definitely one you shouldn’t try at home!

While the massive battery banks in modern EVs can pose unique challenges in the event of an accident, that doesn’t mean they can’t be repurposed to backup your own home.

Continue reading “UL Investigates The Best Way To Fight EV Fires”

NEMA Releases Standard For Vehicle-to-Grid Applications

Vehicle-to-grid (V2G) has been hailed as one of the greatest advantages of electrifying transportation, but has so far remained mostly in the lab. Hoping to move things forward, the National Electrical Manufacturers Association (NEMA) has released the Electric Vehicle Supply Equipment (EVSE) Power Export Permitting Standard.

The new standards will allow vehicle manufacturers and charger (EVSE) suppliers to have a unified blueprint for sending power back and forth to the grid or the home, which has been a bit of a stumbling block so far toward adoption of a seemingly simple, but not easy, technology. As renewables make up a larger percentage of the grid, using the increasing number of EVs on the road as battery backup is a convenient solution.

While the standard will simplify the technology side of bidirectional charging, getting vehicle owners to opt into backing up the grid will depend on utilities and regulators developing attractive remuneration plans. Unfortunately, the standard itself is paywalled, but NEMA says the standard “could put money back in electric vehicle owners’ pockets by making it easier for cars to store energy at night or when turned off and then sell power back to grids at a profit during peak hours.”

We’ve covered some of the challenges and opportunities of V2G systems in the past and if you want something a little smaller scale, how about using a battery that was once in a vehicle to backup your own home?

Bosch Starter Motor Freed From Mercedes Prison

Vehicle alternators are interesting beasts. Produced on a massive scale, these electric machines are available for a minimum of cost and contain all kinds of great parts: some power electronics and a belt-driven generator are generally standard fare. This generator can also be used as a motor with only minor changes to the machine as a whole, so thanks to economies of scale it’s possible to get readily-available, powerful, compact, and cheap motors for all kinds of projects using alternators as a starting point. [LeoDJ] noticed that this starter motor in a modern Mercedes had some interesting benefits beyond all of these perks, but it took a bit more work to get up and running than a typical alternator would have.

The motor, built by Bosch, can be found in the Mercedes E200 EQ Boost. This is a hybrid car, but different than something like a Prius in that it doesn’t have an electric motor capable of powering the car on its own. Instead it uses a combination starter motor/alternator/generator to provide extra power to the engine during acceleration, increasing efficiency and performance. It can also charge the small battery bank when the car slows down. Vehicles that use this system need much beefier alternators than a standard car, but liberating it from the car means that it has much more power available than a typical alternator would.

There were a number of issues to solve, though. Being that the motor/alternator has to do all of this extra work (and that it came out of a car whose brand is known for being tedious to work on in the first place) it is much more complicated than an off-the-shelf alternator. [LeoDJ] has been able to get his to spin by communicating with it over the CAN bus, but there’s still some work to be done before it goes into something like an impressively fast electric bicycle.

Thanks to [RoganDawes] for the tip!

Game boy with custom cartridge mounted on car dashboard

A Game Boy Speedometer, Just Because You Can

From a practical standpoint, [John] may be correct that his recent creation is the “world’s worst digital dash”, but we’re still oddly enamored with the idea of using a Nintendo Game Boy as a digital speedometer. Pulling it off meant interfacing the handheld with the vehicle’s CAN bus system, so whether you’re into retro gaming or car hacking, this project has something to offer.

Showing real-time vehicle speed on the Game Boy sounds like it should be relatively easy, but the iconic game system wasn’t exactly built for such a task. Its 2 MHz CPU and 160×144 pixel dot-matrix screen were every kid’s dream in 1989, but using it as a car dashboard is pushing it. To bridge that gap, [John] designed two custom circuit boards. One interfaces with the Game Boy, intercepting its memory requests and feeding it data from a microcontroller. The other processes the CAN bus signals, translating speed information into a form the Game Boy can display. [John] used inexpensive tools and software to read the CAN bus data, and used GBDK-2020 to write the software in C. His video goes in great detail on how to do this.

Months of work have gone into decoding the Game Boy’s data bus and creating a schematic for the interface board. Tricking the Game Boy into thinking it was loading a game, while actually displaying incoming speed data. The screen’s low resolution and slow refresh rate rendered it barely readable in a moving vehicle. But [John]’s goal wasn’t practicality — it was just proving it could be done.

Want to dive deep into the Game Boy?  Have you seen the Ultimate Game Boy talk?

Continue reading “A Game Boy Speedometer, Just Because You Can”