How To Get Into Cars: Handling Mods

As a budding automotive enthusiast, you finally took the plunge and scored yourself a sweet project car. After going through it from top to toe, you’ve done your basic maintenance and it’s now running like a top. Now you’re getting comfortable, you’ve set your sights on turning your humble ride into a corner carving machine. Here’s a guide to get yourself started.

It’s All About Grip

When it comes to creating a handling monster, the aim is to create a car that sticks to the road like glue, and is controllable when it does break loose. Having a car that handles predictably at the limit is a big help when you’re pushing hard on track, particularly for an inexperienced driver. And, whether you’re hitting the canyons on the weekend or trying to slash your laptimes, it’s always nice to have more grip. Through selecting the right parts and getting the set up right, it’s possible to hone your car’s cornering ability to make it a rewarding experience to drive fast and hard. Continue reading “How To Get Into Cars: Handling Mods”

Solar Panel Keeps Car Battery Topped Off Through OBD-II Port

Up until the 1980s or so, a mechanic could check for shorts in a car’s electrical system by looking for sparks while removing the battery terminal with everything turned off in the car. That stopped being possible when cars started getting always-on devices, and as [Kerry Wong] learned, these phantom loads can leave one stranded with a dead battery at the airport after returning from a long trip.

[Kerry]’s solution is simple: a solar trickle charger. Such devices are readily available commercially, of course, and generally consist of a small photovoltaic array that sits on the dashboard and a plug for the lighter socket. But as [Kerry] points out in the video below, most newer model cars no longer have lighter sockets that are wired to work without the ignition being on. So he chose to connect his solar panel directly to the OBD-II port, the spec for which calls for an always-on, fused circuit connected directly to the positive terminal of the vehicle battery. He had to hack together an adapter for the panel’s lighter plug, the insides of which are more than a little scary, and for good measure, he added a Schottky diode to prevent battery discharge through the panel. Even the weak winter sun provides 150 mA or so of trickle charge, and [Kerry] can rest assured his ride will be ready at the end of his trip.

We used to seeing [Kerry] tear down test gear and analyze unusual devices, along with the odd post mortem on nearly catastrophic failures. We’re glad nothing burst into flames with this one.

Continue reading “Solar Panel Keeps Car Battery Topped Off Through OBD-II Port”

Using Voice Commands To Start A Jeep

If you’ve got a car built in the last 5 years or so, it’s quite likely it’s started by the push of a button when in the presence of a keyfob. Older vehicles make do with the twist of a key. Of course, starting a car by voice command would be cool, and that’s what [John Forsyth] set out to do.

The build uses a Macbook to handle voice recognition, using its Dictation feature. With a hefty download, it’s capable of doing the task offline, making things easier. The dictated words are passed to a Python script, which searches for words like “start” and “go” as a trigger. When an appropriate command is received, the Python script sends a signal over a USB-serial connection to an attached Arduino. The Arduino then toggles a relay connected to the Jeep’s external starter solenoid, starting the vehicle.

As a fan of recent popular films, [John] programmed the system to respond to the command “Jarvis, let’s get things going!”, causing the vehicle to spring into life. There’s room for future improvement, too – the system could benefit from being a little more compact, and there’s a long delay between finishing the sentence and the vehicle starting. A Raspberry Pi and faster dictation software could likely help in this regard.

We’ve seen voice commands used for everything from chess to finding electronic components. Video after the break.

Continue reading “Using Voice Commands To Start A Jeep”

How To Get Into Cars: Basic Maintenance

So, you’ve decided you want to get into cars. After much research and deliberation, you’ve bought yourself a sweet project car, and can’t wait to get down to work. First things first – it’s time to learn about basic maintenance!

Get It Right For A Good Time

Doing necessary maintenance on time is key to enjoying your project car. Too many gearheads know the pain of a neglected beast that spends more time up on jackstands than out on the road. Buying the right car, and keeping a close eye on what needs to be done, will go a long way to improving your experience and relationship with your ride.

If you’ve just bought a car, no matter how good things look, it’s a good idea to go through things with a fine-tooth comb to make sure everything’s up to scratch. This can avoid expensive damage down the line, and is a great way to get your feet wet if you’re new to working on cars. Here’s a bunch of easy jobs you can tackle as a novice that will keep your ride in tip-top condition. Continue reading “How To Get Into Cars: Basic Maintenance”

The Quest To Find A Second Life For Electric Vehicle Batteries

Rechargeable lithium chemistry battery cells found their mass market foothold in the field of personal electronics. The technology has since matured enough to be scaled up (in both physical size and production volume) to electric cars, making long range EVs far more economical than what was possible using earlier batteries. Would the new economics also make battery reuse a profitable business? Eric Lundgren is one of those willing to make a run at it, and [Gizmodo] took a look at his latest venture.

This man is a serial entrepreneur, though his previous business idea was not successful as it involved “reusing” trademarks that were not his to use. Fortunately this new business BigBattery appears to be on far more solid legal footing, disassembling battery packs from retired electric vehicles and repacking cells for other purposes. Typically EV batteries are deemed “worn out” when their capacity drops below a certain percentage (70% is a common bar) but that reduced capacity could still be useful outside of an EV. And when battery packs are retired due to problems elsewhere in the car, or just suffering from a few bad cells, it’s possible to extract units in far better shape.

We’ve been interested in how to make the best use of rechargeable lithium batteries. Ranging from tech notes helping battery reuse, to a comparison of different types, to looking at how their end-of-life recycling will be different from lead-acid batteries. Not to mention countless project wins and fails in between. A recurring theme is the volatility of mistreated or misbehaving batteries. Seeing a number of EV battery packs stacked on pallets and shelves, presumably filled with cells of undetermined quality, fills us with unease. Like the rest of California, Chatsworth is under earthquake risk, and the town was uncomfortably close to some wildfires in 2019. Eric is quick to give assurance that employees are given regular safety training and the facility conforms to all applicable workplace safety rules. But did those rules consider warehouses packed full of high capacity lithium battery cells of unknown quality? We expect that, like the business itself, standards for safety will evolve.

Concerns on safety aside, a successful business here would mean electric vehicles have indeed given battery reuse a profitable economy of scale that tiny little cell phone and laptop batteries could not reach. We are optimistic that Eric and other like-minded people pursuing similar goals can evolve this concept into a bright spot in our otherwise woeful state of e-waste handling.

Turn By Turn Driving Directions From A Turntable

Many of us now carry a phone that can give us detailed directions from where we are to a destination of our choosing. This luxury became commonplace over the last decade plus, replacing the pen-and-paper solution of consulting a map to plan a trip and writing down steps along the way. During the trip we would have to manually keep track of which step we’re on, but wouldn’t it have been nice to have the car do that automatically? [Ars Technica] showed us that innovators were marketing solutions for automatic step by step driving directions in a car over a 100 years ago.

Systems like the Jones Live-Map obviously predated GPS satellites, so they used vehicle odometry. Given a starting point and a mechanical link to the drivetrain, these machines can calculate miles traversed and scroll to the corresponding place in the list of instructions. This is a concept that has been used in many different contexts since, including the “Next Bus in 7 Minutes” type of display at bus stops. Because a bus runs a fixed route, it is possible to determine location of a bus given its odometer reading transmitted over radio. This was useful before the days of cheap GPS receiver and cellular modems. But the odometry systems would go awry if a bus rerouted due to accidents or weather, and obviously the same would apply to those old school systems as well. Taking a detour or, as the article stated, even erratic driving would accumulate errors by the end of the trip.

The other shortcoming is that these systems predated text-to-speech, so reading the fine print on those wheels became a predecessor to today’s distracted driving problem. One of the patent diagrams explained the solution is to hand the device to a passenger to read. But if there’s a copilot available for reading, they can just as easily track the manual list of directions or use a map directly. The limited utility relative to complexity and cost is probably why those systems faded away. But the desire to solve the problem never faded, so every time new technology became available, someone would try again. Just as they did with a tape casette system in the 1970s and the computerized Etak in the 1980s.

[Photo by Seal Cove Auto Museum]

Model S Motor And Volt Battery Go Together Like Peanut Butter And Jelly

A common project category on this site is “put a Raspberry Pi in it”. For people who wrench on their cars, a similarly popular project is the “LS Swap”. Over the past few years, the world of electronics and automotive hacking started to converge in the form of electric car conversions, and [Jalopnik] proclaims the electric counterpart to “LS Swap” is to put a Telsa Model S motor and a Chevy Volt battery into a project car.

The General Motors LS engine lineup is popular with petro heads for basically the same reasons Raspberry Pi are popular with the digital minded. They are both compact, very powerful for the money, have a large body of existing projects to learn from, and an equally large ecosystem of accessories to help turn ideas into reality. So if someone desired more power than is practical from a car’s original engine, the obvious next step is to swap it out for an LS.

Things may not be quite as obvious in the electric world, but that’s changing. Tesla Model S and Chevrolet Volt have been produced in volume long enough for components to show up at salvage yards. And while not up to the levels of LS swaps or Pi mods, there’s a decent sized body of knowledge for powerful garage-built electric cars thanks to pioneers like [Jim Belosic] and a budding industry catering to those who want to build their own. While the decision to use Tesla’s powerful motor is fairly obvious, the choice of Volt battery may be surprising. It’s a matter of using the right tool for the job: most of these projects are not concerned about long range offered by Tesla’s battery. A Volt battery pack costs less while still delivering enough peak power, and as it was originally developed to fit into an existing chassis, its smaller size also benefits garage tinkerers fitting it into project cars.

While Pi SBCs and LS engines are likely to dominate their respective fields for the foreseeable future, the quickly growing and evolving world of electric vehicles means this winning combo of today are likely to be replaced by some other combination in the future. But even though the parts may change, the spirit of hacking will not.

[Photo: by Jim Belosic of motor used in his Teslonda project]