Toyota Heater Switches Learn New Tricks

The look, the feel, the sound — there are few things more satisfying in this world than a nice switch. If you’re putting together a device that you plan on using frequently, outfitting it with high-quality switches is one of those things that’s worth the extra cost and effort.

So we understand completely why [STR-Alorman] went to such great lengths to get the aftermarket seat heaters he purchased working with the gorgeous switches Toyota used in the 2006 4Runner. That might not sound like the kind of thing that would involve reverse engineering hardware, creating a custom PCB, or writing a bit of code to tie it all together. But of course, when working on even a halfway modern automobile, it seems nothing is ever easy.

The process started with opening up the original Toyota switches and figuring out how they work. The six-pin units have a lot going on internally, with a toggle, a rheostat, and multiple lights packed into each one. Toyota has some pretty good documentation, but it still took some practical testing to distill it down into something a bit more manageable. The resulting KiCad symbol for the switch helps explain what’s happening inside, and [STR-Alorman] has provided a chart that attributes each detent on the knob with the measured resistance.

But understanding how the switches worked was only half the battle. The aftermarket seat heaters were only designed to work with simple toggles, so [STR-Alorman] had to develop a controller that could interface with the Toyota switches and convince the heaters to produce the desired result. The custom PCB hosts a Teensy 3.2 that reads the information from both the left and right seat switches, and uses that to control a pair of beefy MOSFETs. An interesting note here is the use of very slow pulse-width modulation (PWM) used to flip the state of the MOSFET due to the thermal inertia of the heater modules.

We love the effort [STR-Alorman] put into documenting this project, going as far as providing the Toyota part numbers for the switches and the appropriate center-console panel with the appropriate openings to accept them. It’s an excellent resource if you happen to own a 4Runner from this era, and a fascinating read for the rest of us.

Nine men of various ages and ethnicities stand in a very clean laboratory space. A number of large white cabinets with displays are on the left behind some white boards and there are wireless charging coils on a dark tablecloth in the foreground. In the back of the lab is a white Porsche Taycan.

Polyphase Wireless EV Fast Charging Moves Forward

While EV charging isn’t that tedious with a cable, for quick trips, being able to just park and have your car automatically charge would be more convenient. Researchers from Oak Ridge National Lab (ORNL) and VW have moved high-speed wireless EV charging one step closer to reality.

We’ve seen fast wireless EV chargers before, but what sets this system apart is the coil size (~0.2 m2 vs 2.0 m2) and the fact it was demonstrated on a functioning EV where previous attempts have been on the bench. According to the researchers, this was the first wireless transfer to a light duty vehicle at 270 kW. Industry standards currently only cover systems up to 20 kW.

The system uses a pair of polyphase electromagnetic coupling coils about 50 cm (19″) wide to transfer the power over a gap of approximately 13 cm (5″). Efficiency is stated at 95%, and that 270 kW would get most EVs capable of those charge rates a 50% bump in charge over ten minutes (assuming you’re in the lower part of your battery capacity where full speeds are available).

We’ve seen some in-road prototypes of wireless charging as well as some other interesting en route chargers like pantographs and slot car roads. We’ve got you covered if you’re wondering what the deal is with all those different plugs that EVs have too.

Continue reading “Polyphase Wireless EV Fast Charging Moves Forward”

Open Source Your Air Ride Suspension

Air ride suspensions have several advantages over typical arrangements, but retrofitting a system to a vehicle that didn’t come with it can get pricey fast, especially if you want to go beyond the basics. The Open Source Air Suspension Management Controller aims to give people a fully customizable system without the expense or limitations of commercial units.

The project started as an upgrade to a basic commercial system, so it assumes that you’re bringing your own “bags, tank, compressor, tubing and fittings.” The current board uses an Arduino Nano, but the next revision based on the ESP32 will allow for a wider feature set.

With a Bluetooth connection and Android app, you can control your ride height from a phone or integrated Android head unit. Currently, the app shows the pressure readings from all four corners and has controls for increasing or decreasing the pressure or airing all the way up or down to a given set point.

Want to know how air suspensions work? How about this LEGO model? If you want a suspension with active tuning for your bike, how about this Arduino-powered mod?

From Nissan ICE Pickup To BEV With Nissan Leaf Heart

First run of the motor with battery pack still externally connected.

Last year [Jimmy] got a request from a customer ([Dave]) to help convert a 1998 Nissan Frontier pickup into an electric drive vehicle, with a crashed 2019 Nissan Leaf providing the battery and electric motor for the conversion. He has documented the months-long journey with plenty of photos, as well as a series of videos over at the [EVSwap Conversions] YouTube channel. While the idea sounds easy enough, there’s a lot more to it than swapping out the ICE with an electric motor and sticking some batteries to the bottom of the car somewhere with double-sided tape. The pickup truck got effectively stripped down  and gutted, before the 110 kW (150 HP) motor got installed using an adapter plate.

The donor Leaf’s battery pack came in at a decently sized 40 kWh, which should give the converted Nissan Frontier BEV a range of easily 100 miles. This pack was split up into two packs, which got put into a custom aluminium battery box, each mounted on one side of the driveshaft. The charging port got installed on the front of the car, next to the logo, discreetly behind a panel. The front of the car had much of the openings that were needed for the ICE’s radiator sealed up for reduced air friction, along with the new low-friction tires that got installed. Although this converted car still has a radiator, it only needs to assisting cooling the motor stack (including inverter and charger) when driving slowly or charging, making it far less demanding and thus allows for a more sleek front.

As a bonus, the car still has the manual 5-gear shift, just without a clutch, and the pickup bed can now also tilt, albeit with hydraulics (so far). Considering that it started with a decent 1998 pickup and totaled Nissan Leaf, this is among the cleanest conversions we have seen, not to mention a good use of a crashed BEV.

Thanks to [JohnU] for the tip.

Continue reading “From Nissan ICE Pickup To BEV With Nissan Leaf Heart”

A yellow, three wheeled vehicle with a canopy that opens upward over the body. It looks a little like the cockpit of a jet figher.

Restoring A Vintage German EV

When you think of EVs from the 90s, GM’s EV1 may come to mind, but [bleeptrack] found a more obscure CityEL three wheeler to restore.

This Personal Electric Vehicle (PEV) is no spring chicken, but a new set of LiFePO4 batteries should give its 48 V electrical system a new lease on life. [bleeptrack] shows us through the cockpit of this jet fighter-esque EV and its simple control systems, including a forward and reverse selector and the appreciable kilometers on the odometer.

Modernizing touches for this vehicle include a smart shunt to track the vehicle charge level as an improvement over the wildly unreliable original system and a new DC to DC converter after the original unit failed. These changes really cleaned up the electronics compartment from the original rat’s nest under the seat.

The design of this vehicle has us thinking of the Minimal Motoring Manifesto and how EVs could make cars simpler again.

Continue reading “Restoring A Vintage German EV”

Art Exhibit Lets You Hide From Self-Driving Cars

In the discussions about how dangerous self-driving cars are – or aren’t – one thing is sorely missing, and that is an interactive game in which you do your best to not be recognized as a pedestrian and subsequently get run over. Even if this is a somewhat questionable take, there’s something to be said for the interactive display over at the Asian Art Museum in San Francisco which has you try to escape the tyranny of machine-vision and get recognized as a crab, traffic cone, or something else that’s not pedestrian-shaped.

Daniel Coppen, one of the artists behind “How (not) to get hit by a self-driving car,” sets up a cone at the exhibit at the Asian Art Museum in San Francisco on March 22, 2024. (Credit: Stephen Council, SFGate)
Daniel Coppen, one of the artists behind “How (not) to get hit by a self-driving car,” sets up a cone at the exhibit at the Asian Art Museum in San Francisco on March 22, 2024. (Credit: Stephen Council, SFGate)

The display ran from March 21st to March 23rd, with [Stephen Council] of SFGate having a swing at the challenge. As can be seen in the above image, he managed to get labelled as ‘fire’ during one attempt while hiding behind a stop sign as he walked the crossing. Other methods include crawling and (ab)using a traffic cone.

Created by [Tomo Kihara] and [Daniel Coppen], it’s intended to be a ‘playful, engaging game installation’. Both creators make it clear that self-driving vehicles which use LIDAR and other advanced detection methods are much harder to fool, but given how many Teslas are on the road using camera-based systems, it’s still worth demonstrating the shortcomings of the technology.

There’s no shortage of debate about whether or not autonomous vehicles are ready to share the roads with human drivers, especially when they exhibit unusual behavior. We’ve already seen protesters attempt to confuse self-driving systems with methods that aren’t far removed from what [Kihara] and [Coppen] have demonstrated here, and it seems likely such antics will only become more common with time.

Ford Patent Wants To Save Internal Combustion

There’s no doubt the venerable internal combustion engine is under fire. A recent patent filing from Ford claims it can dramatically reduce emissions and, if true, the technology might give classic engines a few more years of service life, according to [CarBuzz].

The patent in question centers on improving the evaporative emission system’s performance. The usual evaporative emission system stores fuel fumes in a carbon-filled canister. The canister absorbs fuel vapor when under high pressure. When the engine idles and pressure in the cylinder drops, the canister releases fumes, which are combusted with ordinary fuel/air mixture.

Continue reading “Ford Patent Wants To Save Internal Combustion”