Karakuri Kaizen: Hacks For The Factory Floor

Anyone who has an interest and/or career in manufacturing would have heard of Kaizen, generally a concept to continuously improve your process everywhere. Under that huge umbrella is Karakuri Kaizen, encouraging workers on the factory floor to adopt a hacker mentality and improve their own work stations. It is right up our alley, manufacturer or not, making this overview by Automotive News an entertaining read.

Karakuri could be translated as “mechanism”, but implies something novel in the vein of English words gadgets, gizmos, or dare we say it: hacks. Karakuri has a history dating back to centuries-old wind-up automatons all the way to modern Rube Goldberg contraptions. When applied to modern manufacturing (as part of factory training) it encourages everyone to devise simple improvements. Each might only shave seconds off assembly time, but savings add up in due time.

Modern global manufacturing is very competitive and survival requires producing more efficiently than your competitors. While spotlights of attention may be focused on technology, automation, and construction of “alien dreadnoughts”, that focus risks neglecting gains found at a smaller and simpler scale. Kaizen means always searching for improvements, and the answer is not always more technology.

Several points in these articles asserted purely mechanical karakuri are far less expensive than automated solutions, by comparing price tags which are obviously for industrial automation equipment. We’d be curious to see if our favorite low cost tools — AVR, PIC, ESP32, and friends — would make future inroads in this area. We’ve certainly seen hacks for production at a much smaller scale.

Embedded below the break is a short video from Toyota showing off a few karakuri on their factory floor.

Continue reading “Karakuri Kaizen: Hacks For The Factory Floor”

A DIY Interface for Subaru Select Monitor 1

Hacking A 20 Year Old Subaru

While cars are slowing becoming completely computer-controlled, road vehicles have been relying on computers since the 1970’s. The first automotive use of computers was in engine control units (ECUs) which came along as fuel injection systems started to replace carburetors.

[P1kachu]’s 1997 Subaru Impreza STi, like most cars of this vintage, uses an ECU and provides a diagnostic connector for external communications. [P1kachu]’s Subaru hacking project includes building a diagnostic interface device, dumping the ECU’s firmware, and reverse engineering the binary to understand and disable the speed limiter. If this looks familiar, it’s because we just covered the infotainment hacks in this car on Saturday. But he added information about the communications protocols is definitely worth another look.

This era of Subaru uses a non-standard diagnostics protocol called SSM1, which is essentially a 5 volt TTL serial line running at 1953 bits per second. The custom interface consists of a Teensy and a 3.3V to 5V level shifter. Once connected, commands can be sent directly to the ECU. Fortunately, the protocol has been quite well documented in the past. By issuing the “Read data from ECU address” command repeatedly, the full firmware can be dumped.

[P1kachu] goes on to locate the various engine tuning maps and discover the inner workings of the speed limiter. With cars getting more computerized, it’s nice to see folks are still able to tune their rides, even if it means using Teensys instead of wrenches.

Fail Of The Week: How Not To Electric Vehicle

If you ever doubt the potential for catastrophe that mucking about with electric vehicles can present, check out the video below. It shows what can happen to a couple of Tesla battery modules when due regard to safety precautions isn’t paid.

The video comes to us by way of [Rich], a gearhead with a thing for Teslas. He clearly knows his way around the EV world, having rebuilt a flood-soaked Tesla, and aspires to open an EV repair shop. The disaster stems from a novelty vehicle he and friend [Lee] bought as a side project. The car was apparently once a Disney prop car, used in parades with the “Mr. Toad’s Wild Ride” theme. It was powered by six 6-volt golf cart batteries, which let it maintain a stately, safe pace on a crowded parade route. [Rich] et al would have none of that, and decided to plop a pair of 444-cell Tesla modules into it. The reduced weight and increased voltage made it a real neck-snapper, but the team unwisely left any semblance of battery management out of the build.

You can guess what happened next, or spin up to the 3:00 mark in the video to watch the security camera mayhem. It’s not clear what started the fire, but the modules started cooking off batteries like roman candles. Quick action got it pushed outside to await the fire department, but the car was a total loss long before they showed up. Luckily no other cars in the garage were damaged, nor were there any injuries – not that the car didn’t try to take someone out, including putting a flaming round into [Lee]’s chest and one into the firetruck’s windshield.

[Rich] clearly knew he was literally playing with fire, and paid the price. The lesson here is to respect the power of these beefy batteries, even when you’re just fooling around.

Continue reading “Fail Of The Week: How Not To Electric Vehicle”

Belt Up With A Redundant Car Part

The toothed belt that turns the camshaft in synchronization with the crankshaft on many motor vehicle engines is something of an under-appreciated component. Unless you are unlucky enough to ave had one fail and destroy your engine, it’s probably something you’ve never given a second thought to outside of periodic service intervals.

For something to perform such a task over so many thousands of miles of motoring it must be made of pretty strong stuff. Even when a belt is life-expired it is still in good physical shape, and [Crispyjones] saw the potential in a used Subaru belt to make a different type of belt. After keeping his engine in sync for so long it would serve no less vital a purpose, and keep his pants from falling down.

You can of course buy the hardware for a belt from a decent crafting store, but he chose to recycle a buckle from a worn-out leather belt. Cleaning the timing belt and cutting it carefully so that the Subaru logo would be on show to the outside world in the finished article, he secured it round the buckle with some epoxy glue and a bit of stitching. The original leather retaining loop is not really appropriate, so one is fashioned from wire. Finally we see the process for measuring where the holes should be placed, followed by their creation with a hole punch.

Hackaday isn’t a crafting site, so we don’t often feature projects like this one. But the humble timing belt is a component that we’ve probably all replaced and thrown away more than once without really thinking what the properties of the thing we’re throwing away are. So we like this relatively simple project for its re-use of something few of us would otherwise keep, as well as for its delivering rather a cool belt. We’ve featured plenty of cambelts here doing their traditional job, but this is the first time we’ve had one as an item of clothing. We’ll leave you with a glimpse of a future without cambelts at all.

Ford Ka Becomes Diwheel Monster

If you’ve been to the right events, you’ve seen them before – the cars with an external cage that let the car complete a somersault in the forward direction under heavy braking. They’re impressive, but it’s possible to take things even further. Enter [mastermilo82] and the RollKa.

The RollKa follows on from the RollGolf, which was a straightforward roll car build. Built around a Ford Ka, it eschews the external cage for a more radical design. The Ka has been shortened, and designed to fit within two enormous steel rims which wrap around each side of the car. Additional idler wheels have been welded to the Ka’s roof to enable it to effectively roll within the outer steel rims.

It’s a rather eccentric design, known as a diwheel. We’ve seen impressive electric versions before, but at least at this stage, this project appears to lack any advanced control systems and gets by on sheer luck and welding prowess. The build is still at an early stage, with episode three starting some early movement tests under power. It’s a testament to what can be achieved with a spacious garage and some imagination, and we can’t wait to see what happens next! Video after the break.

[Thanks to Baldpower for the tip!]

Continue reading “Ford Ka Becomes Diwheel Monster”

Researcher uses antenna to clone Tesla key fob

Tesla Opens With Precomputed Key Fob Attack

This clever precomputation attack was developed by a group of researchers at KU Leuven in Belgium. Unlike previous key fob attacks that we’ve covered in the past which have been essentially relay attacks, this hack precomputes a ton of data, looks for a collision in the dataset, and opens the door. Here’s how it works.

Continue reading “Tesla Opens With Precomputed Key Fob Attack”

Toil In Style With Salvaged Porsche Office Chairs

It seems as if everyone has finally decided to stop pretending that standing in front of a desk for 8+ hours was something anyone actually wanted to do, and once again embrace the classic adjustable office chair. But whether you’re writing code in a cubicle or are one of those people who apparently makes a living by having people watch them play video games, one thing is certain: your chair needs to be cool enough to make up for the years shaved off your life by sitting in it all day.

Case in point, these chairs that were made out of seats salvaged from a Porsche 996 by [Colby Newman]. You might never be able to afford the car they came out of on your salary, but at least you can pretend you’re power shifting into fifth while doing your TPS reports.

The first step, and arguably the most important one, was getting the seats from a Porsche. [Colby] wisely cautions the reader that they should avoid seats with air bags, as the last thing you want is your chair to explode while you’re streaming Fortnite. This is especially true if you are looking to salvage the seats yourself from the junkyard, as special care needs to be taken on how you remove them from the vehicle.

Assuming you got the seat without blowing yourself up, the next step is to mate it to the adjustable base. This part is going to depend on the make and model of vehicle you got the seats out of, but in this case it was fairly easy to use some flat steel bars to adapt the tubular frame of the Porsche’s seat to the base from the donor office chair. [Colby] put everything together with nuts and bolts, but this could potentially be an excuse to drag out the welder.

We’ve previously seen the driver seat salvaged from a wrecked car for use in a simulator, and a standard office chair upgraded with force feedback. We wonder who will be the first to combine all these ideas into one ultimate office racing chair…