Mining And Refining: From Red Dirt To Aluminum

No matter how many syllables you use to say it, aluminum is one of the most useful industrial metals we have. Lightweight, strong, easily alloyed, highly conductive, and easy to machine, cast, and extrude, aluminum has found its way into virtually every industrial process and commercial product imaginable.

Modern life would be impossible without aluminum, and yet the silver metal has been in widespread use only for about the last 100 years. There was a time not all that long ago that aluminum dinnerware was a status symbol, and it was once literally worth more than its weight in gold. The reason behind its one-time rarity lies in the effort needed to extract the abundant element from the rocks that carry it, as well as the energy to do so. The forces that locked aluminum away from human use until recently have been overcome, and the chemistry and engineering needed to do that are worth looking into in our next installment of “Mining and Refining.”

Continue reading “Mining And Refining: From Red Dirt To Aluminum”

A home-made colorimeter

Classic Colorimeter Clone Calibrates Cuvettes’ Contents

For anyone dabbling in home chemistry, having access to accurate measurement equipment can mean the difference between success and failure. But with many instruments expensive and hard to find, what’s a home chemist to do? Build their own equipment, naturally. [Abizar] went ahead and built himself a colorimeter out of wood and spare electronic components.

A colorimeter (in a chemistry context) is an instrument that determines the concentration of a solution by measuring how much light of a certain wavelength is absorbed. [Abizar]’s design was inspired by the classic Klett-Summerson colorimeter from the 1950s, which uses a light bulb and color filters to select a wavelength, plus a photoresistor to measure the amount of light absorbed by the sample. Of course, a more modern solution would be to use LEDs of various colors, which is exactly what [Abizar] did, although he did give it a retro touch by using an analog meter as the readout device.

The body of the colorimeter is made from laser-cut pieces of wood, which form a rigid enclosure when stacked together. The color wheel holds eleven different LEDs and is made with a clever ratchet mechanism to keep it aligned to the cuvette, as well as a sliding contact to drive current into the selected LED. All parts are painted black to prevent stray reflections inside the instrument, but also make it look cool enough to fit in any evil genius’s lab. In the video embedded below, [Abizar] demonstrates the instrument and shows how it was put together.

While we haven’t seen anyone make their own colorimeter before, we have seen DIY spectrophotometers (which measure the entire absorption spectrum of a solution) and even building blocks to make a complete biochemistry lab.

Continue reading “Classic Colorimeter Clone Calibrates Cuvettes’ Contents”

Secret Ingredient For 3D-Printed Circuit Traces: Electroplating

Conductive filament exists, but it takes more than that to 3D print something like a circuit board. The main issue is that traces made from conductive filament are basically resistors; they don’t act like wires. [hobochild]’s interesting way around this problem is to use electroplating to coat 3D-printed traces with metal, therefore creating a kind of 3D-printed circuit board. [hobochild] doesn’t yet have a lot of nitty-gritty detail to share, but his process seems fairly clear. (Update: good news! here’s the project page and GitHub repository with more detail.)

The usual problem with electroplating is that the object to be coated needs to be conductive. [hobochild] addresses this by using two different materials to create his test board. The base layer is printed in regular (non-conductive) plastic, and the board’s extra-thick traces are printed in conductive filament. Electroplating takes care of coating the conductive traces, resulting in a pretty good-looking 3D-printed circuit board whose conductors feature actual metal. [hobochild] used conductive filament from Proto-pasta and the board is a proof-of-concept flashing LED circuit. Soldering might be a challenge given the fact that the underlying material is still plastic, but the dual-material print is an interesting angle that even allows for plated vias and through-holes.

We have seen conductive filament used to successfully print workable electrical connections, but applications are limited due to the nature of the filament. Electroplating, a technology accessible to virtually every hacker’s workbench, continues to be applied to 3D printing in interesting ways and might be a way around these limitations.

The (Sodium Chloride) Crystal Method

[Chase’s] post titled “How to Grow Sodium Chloride Crystals at Home” might as well be called “Everything You Always Wanted to Know about Salt Crystals (but Were Afraid to Ask).” We aren’t sure what the purpose of having transparent NaCl crystals are, but we have to admit, they look awfully cool.

Sodium chloride, of course, is just ordinary table salt. If the post were simply about growing random ugly crystals, we’d probably have passed over it. But these crystals — some of them pretty large — look like artisan pieces of glasswork. [Chase] reports that growing crystals looks easy, but growing attractive crystals can be hard because of temperature, dust, and other factors.

You probably have most of what you need. Table salt that doesn’t include iodine, a post, a spoon, a funnel, filter paper, and some containers. You’ll probably want tweezers, too. The cooling rate seems to be very important. There are pictures of what perfect seed crystals look like and what happens when the crystals form too fast. Quite a difference! Once you find a perfectly square and transparent seed crystal, you can use it to make bigger ones.

After the initial instructions, there is roughly half the post devoted to topics like the effect growth rate has on the crystal along with many pictures. There are also notes on how to form the crystals into interesting shapes like stars and pyramids. You can also see what happens if you use iodized salt.

If salt is too tame for you, try tin. Or opt for copper, if you prefer that.

Mining And Refining: Pure Silicon And The Incredible Effort It Takes To Get There

Were it not for the thin sheath of water and carbon-based life covering it, our home planet would perhaps be best known as the “Silicon World.” More than a quarter of the mass of the Earth’s crust is silicon, and together with oxygen, the silicate minerals form about 90% of the thin shell of rock that floats on the Earth’s mantle. Silicon is the bedrock of our world, and it’s literally as common as dirt.

But just because we have a lot of it doesn’t mean we have much of it in its pure form. And it’s only in its purest form that silicon becomes the stuff that brought our world into the Information Age. Elemental silicon is very rare, though, and so getting appreciable amounts of the metalloid that’s pure enough to be useful requires some pretty energy- and resource-intensive mining and refining operations. These operations use some pretty interesting chemistry and a few neat tricks, and when scaled up to industrial levels, they pose unique challenges that require some pretty clever engineering to deal with.

Continue reading “Mining And Refining: Pure Silicon And The Incredible Effort It Takes To Get There”

Magnesium: Where It Comes From And Why We’re Running Out

Okay, we’re not running out. We actually have tons of the stuff. But there is a global supply chain crisis. Most of the world’s magnesium is processed in China and several months ago, they just… stopped. In an effort to hit energy consumption quotas, the government of the city of Yulin (where most of the country’s magnesium production takes place) ordered 70% of the smelters to shut down entirely, and the remainder to slash their output by 50%. So, while magnesium remains one of the most abundant elements on the planet, we’re readily running out of processed metal that we can use in manufacturing.

Nikon camera body
The magnesium-alloy body of a Nikon d850. Courtesy of Nikon

But, how do we actually use magnesium in manufacturing anyway? Well, some things are just made from it. It can be mixed with other elements to be made into strong, lightweight alloys that are readily machined and cast. These alloys make up all manner of stuff from race car wheels to camera bodies (and the chassis of the laptop I’m typing this article on). These more direct uses aside, there’s another, larger draw for magnesium that isn’t immediately apparent: aluminum production.

But wait, aluminum, like magnesium is an element. So why would we need magnesium to make it? Rest assured, there’s no alchemy involved- just alloying. Much like magnesium, aluminum is rarely used in its raw form — it’s mixed with other elements to give it desirable properties such as high strength, ductility, toughness, etc. And, as you may have already guessed, most of these alloys require magnesium. Now we’re beginning to paint a larger, scarier picture (and we just missed Halloween!) — a disruption to the world’s aluminum supply.

Continue reading “Magnesium: Where It Comes From And Why We’re Running Out”

A Fascinating Plot Twist As Researchers Recreate Classic “Primordial Soup” Experiment

Science is built on reproducibility; if someone else can replicate your results, chances are pretty good that you’re looking at the truth. And there’s no statute of limitations on reproducibility; even experiments from 70 years ago are fair game for a fresh look. A great example is this recent reboot of the 1952 Miller-Urey “primordial soup” experiment which ended up with some fascinating results.

At the heart of the Miller-Urey experiment was a classic chicken-and-the-egg paradox: complex organic molecules like amino acids and nucleic acids are the necessary building blocks of life, but how did they arise on Earth before there was life? To answer that, Stanley Miller, who in 1952 was a graduate student of Harold Urey,  devised an experiment to see if complex molecules could be formed from simpler substances under conditions assumed to have been present early in the planet’s life. Miller assembled a complicated glass apparatus, filled it with water vapor and gasses such as ammonia, hydrogen, and methane, and zapped it with an electric arc to simulate lightning. He found that a rich broth of amino acids accumulated in the reaction vessel; when analyzed, the sludge was found to contain five of the 20 amino acids.

The Miller-Urey experiment has been repeated over and over again with similar results, but a recent reboot took a different tack and looked at how the laboratory apparatus itself may have influenced the results. Joaquin Criado-Reyes and colleagues found that when run in a Teflon flask, the experiment produced far fewer organic compounds. Interestingly, adding chips of borosilicate glass to the Teflon reaction chamber restored the richness of the resulting broth, suggesting that the silicates in the glassware may have played a catalytic role in creating the organic soup. They also hypothesize that the highly alkaline reaction conditions could create microscopic pits in the walls of the glassware, which would serve as reaction centers to speed up the formation of organics.

This is a great example of a finding that seems to knock a hole in a theory but actually ends up supporting it. On the face of it, one could argue that Miller and Urey were wrong since they only produced organics thanks to contamination from their glassware. And it appears to be true that silicates are necessary for the abiotic generation of organic molecules. But if there was one thing that the early Earth was rich in, it was silicates, in the form of clay, silt, sand, rocks, and dust. So this experiment lends support to the abiotic origin of organic molecules on Earth, and perhaps on other rocky worlds as well.

[Featured image credit: Roger Ressmeyer/CORBIS, via Science History Institute]