Researching Cosmic Rays With Cloud Chambers

In the late 1940s, the US Naval Research Laboratory used a few German-built V2 rockets to study cosmic rays from above Earth’s atmosphere. To do this, a nitrogen-powered cloud chamber was fitted inside the nose cone of these former missiles, sent aloft, and photographed every 25 seconds during flight. When [Markus] read about these experiments, he thought it would be an excellent way to study cosmic rays from a high altitude balloon and set about building his own Wilson cloud chamber.

Cloud chambers work by supersaturating the atmosphere with water or alcohol vapor. This creates a smoky cloud inside the chamber, allowing for the visualization of radiation inside the cloud. Usually the clouds in these chambers are made in a very cold environment using dry ice, but rapidly decreasing the air pressure in the chamber will work just as well, as [Markus] discovered.

[Markus]’s small cloud chamber uses a CO2 cartridge to provide the pressure in the cloud chamber before dumping the CO2 out of the chamber with the help of a solenoid valve.

In the video after the break, [Markus] demonstrates his cloud chamber by illuminating the cloud with a laser pointer and introducing a few alpha particles with a sample of Americium 241. It looks very cool, and seems to be useful enough to count cosmic rays aboard a balloon or amateur rocket.

Continue reading “Researching Cosmic Rays With Cloud Chambers”

Rocket Propellant Manufactured From Old Newspaper

It turns out that old newsprint can be a bit explosive; at least when it’s combined with the proper ingredients. [Markus Bindhammer] worked out a way to make solid rocket propellant from newspaper. Judging from the test footage after the break the home made engines work great!

There isn’t a long list of ingredients. In addition to newspaper you’ll need some potassium chlorate (KClO3) which serves as an oxidizer, white wood glue, and PVC pipe. The KClO3 is ground with a mortar and pestle, then run through a sieve before being combined with the wood glue. This combination is painted on the newspaper which is then rolled up with a glass rod at the center. This is allowed to harden before going into the PVC. The excess is trimmed and the whole thing is baked in a convection oven at 105 C for two hours.

If this process doesn’t suit you maybe cooking up a batch of sugar-based propellant is worth a try?

Continue reading “Rocket Propellant Manufactured From Old Newspaper”

Vitamin C Used To Detect The Presence Of Vanillin

[Markus Bindhammer] recently made a discovery while conduction chemistry experiments in his home lab. Ascorbic acid can be used to detect the presence of Vanillin. The reaction starts as a color change, from a clear liquid to a dark green. When he continued to heat the mixture he ended up with the surface crystallization seen above.

Vanillin is an organic compound which you will commonly find in vanilla extract, with the synthetic variety being used in imitation extract. Ascorbic acid is a type of vitamin C. When [Markus] first observed the color change he though it could be due to metallic contamination, but running the experiment again without the use of metal tools or probes, produced the same result.

You can see in the clip after the break that it doesn’t take long to turn green. The vanillin must be heated to 130 degrees C before adding the ascorbic acid or the color change will not occur. He believes this can be a reliable way to detect the presence of Vanillin in a substance.

Continue reading “Vitamin C Used To Detect The Presence Of Vanillin”

Passion Fruit Acquire Laser Defenses

Apparently being overrun by ripe Passion Fruit is a problem if you live in Hawaii. [Ryan K’s] solution to the situation was to use his extra fruit to power a laser. In an experiment that would make [Walter White] proud, [Ryan] gathered everyday supplies to form a battery based on the fruit.

He used some galvanized bolts as the source of zinc. It forms one pole of each cell, with a thin copper tube as the other pole. Each cell is rather weak, but when combined with others it makes a respectable battery. We’ve seen acidic fruit used to power LEDs, but [Ryan] wanted to do a little more. He built a circuit that would store electricity until he had enough potential to power an LED diode. After the break you can see a four second clip of the fruit wielding its new laser defense system.

Continue reading “Passion Fruit Acquire Laser Defenses”

Taking A Look At Decapped ICs

Aside from wanting to play around with nitric acid, [Ben] really didn’t have a reason to decap a few 74xx and 4000-series logic chips. Not that we mind, as he provides a great tutorial at looking at a bare IC that isn’t covered in epoxy and resin.

Most ICs are encased in a hard epoxy shell making it very difficult to look at the circuits within. [Ben] tried to grind this epoxy off with a Dremel tool, but didn’t have much luck until he moved over to a CNC mill to remove 0.040 – 0.050″ of epoxy without breaking the bond wires.

After carving out a nice pocket above the die, [Ben] put a few drops of nitric acid on the chip to dissolve the epoxy coating.  This worked very slowly at room temperature, but after putting the chips on a hot plate the acid was able to reveal the die underneath.

After successfully removing all the epoxy and giving them an acetone bath, [Ben] took his chips over to the microscope and was able to check out the underlying circuit. He doesn’t have any idea what he could do with these decapped logic chips, but the bond wires are still intact so he could still use these chips in a build.

We’d like to see a few decapped MEMS devices, but if you have a suggestion on what [Ben] can do with his decapped chips, drop a note in the comments.

Continue reading “Taking A Look At Decapped ICs”

ReactionWare 3D Printed Medicine

The University of Glasgow has released a Chemistry research paper covering the applicational process of printing pharmaceutical compounds.

Yes thats correct actually printing medication. Using various feedstock of chemicals they see a future where manufacturing your medication from home will be possible. Using standard 3D printing technology it is possible to assemble pre-filled “vessels” in such a way that the required chemical reactions take place to produce the required medication. This will be like having a minature medication manufacturing facility in your home. The possible implications of this could be far reaching.

There would need to be a locked down software etc or certain chemcials restrictions to prevent the misuse of this technology. Prof [Lee Cronin], who came up with the paper’s principal has called this process “reactionware”

Professor [Cronin] found, using this fabrication process, that even the most complicated of vessels could be built relatively quickly in just a few hours.

[via boingboing] Continue reading “ReactionWare 3D Printed Medicine”

Measuring How Components React To Extremely Cold Temperatures

[Shahriar Shahramian] is playing with some liquid nitrogen in order to see how various components react to extremely low temperatures. After the break you will find forty-one minutes of video in which he conducts and explains each experiment. This does have practical applications. If you’re designing hardware for use in space you definitely need to know how the hardware will be affected. We’ve actually seen test rigs built for this very purpose.

During the presentation he doesn’t water down the concepts observed, including the equations governing each reaction to temperature change. If you’re in the mood for a little bit lighter faire you should check out some of the liquid nitrogen cooking hacks like this super-cold cocktail pops project.

 

Continue reading “Measuring How Components React To Extremely Cold Temperatures”