PI Board chess board on a table in a room

Chess What: One More Pi-Powered Board

Chess is timeless, but automating it? That’s where the real magic begins. Enter [Tamerlan Goglichidze]’s Pi Board, an automated chess system that blends modern tech with age-old strategy. Inspired by Harry Potter’s moving chessboard and the commercial Square Off board, [Tamerlan] re-imagines the concept using a Raspberry Pi, stepper motors, and some clever engineering. It’s not just about moving pieces — it’s about doing so with precision and flair.

At its core, the Pi Board employs an XY stepper motor grid coupled with magnets to glide chess pieces across the board. While electromagnets seemed like a promising start, [Tamerlan] found them impractical due to overheating and polarity-switching issues. Enter servo linear actuators: efficient, precise, and perfect for the job.

But the innovation doesn’t stop there. A custom algorithm maps the 8×8 chess grid, allowing motors to track positions dynamically—no tedious resets required. Knight movements and castling? Handled with creative coding that keeps gameplay seamless. [Tamerlan] explains it all in his sleekly designed build log.

Though it hasn’t been long since we featured a Pi-powered LED chess board, we feel that [Tamerlan]’s build stands out for its ingenuity and optimization. For those still curious, we have a treasure trove of over fifty chess-themed articles from the last decade. So snuggle up during these cold winter months and read up on these evergreens!

Continue reading “Chess What: One More Pi-Powered Board”

A replica LX System game console inspired by the UFO 50 video game sitting on a wooden desk next to a can of diet Coke.

UFO 50 Inspired LX System Looks Straight Out Of A Video Game

They simply don’t make them like they used to, and in the case of this retro LX system build, they only make what never existed in the first place. Earlier this year the long awaited video game UFO 50 released to widespread critical acclaim. The conceit of the game is an interactive anthology of a faux 1980’s game console constructed by a large group of actual indie game developers. Leave it to [Luke], who admitted to UFO 50 to taking over his life, to bring the LX system from the digital screen to the real world.

Each piece of the LX System case was printed on a multi-color filament capable Bambu Labs P1S. Dual XLR jacks wired up as USB serve as controller ports, and the controller itself is a repurposed NES style USB controller fitted with a new housing printed with the same filament as the case. Both the prominent front mounted power and “sys” buttons are functional; the latter actually switches to a new game within UFO 50. The brains of this project is a mini Windows PC hooked up to a 9 inch 720p LCD screen which is plenty enough resolution for pixelated look of the games. As impressive as replicating the whole case look is, it’s really brought together by the addition of a 3.5 inch floppy drive. It could be an interesting way to backup save files, provided they fit within 1.44 MB.

In addition to sharing the completed LX System, [Luke] has also made the print files available online along with a list of project materials used. It would be neat to see an alternate color scheme or remix for this working prototype of a console that never actually existed. In the meantime, there are plenty more games to play and discover in UFO 50…there’s 50 of them after all.

via Time Extension

The Japanese Console You Maybe Haven’t Heard Of

The games consoles which came out of Japan in the 1980s are the stuff of legend, with the offerings from Nintendo and Sega weaving themselves into global popular culture. Most of us can recite a list of the main players in the market, but how many of us would have Epoch and their Super Cassette Vision on that list? [Nicole Express] is here with a look at this forgotten machine which tried so hard and yet missed the target when competing with the NES or Master System.

Before the arrival of the Sega and Nintendo cartridge based systems, one of the better known Japanese consoles was the Epoch Cassette Vision. This was something of a hybrid between single-game TV games and an Atari 2600 style computing device for games, in that it used pre-programmed microcontrollers in its cartridges rather than the ROMs of the 2600. For the late-70s gamer this was still hot stuff, but by 1983 as the Master System and NES hove into view it was definitely past its best. Epoch’s response for 1984 was the Super Cassette Vision, a much more conventional 8-bit console with on the face of it some respectable graphics and sound hardware.

The article looks at the console’s capabilities in detail, highlighting the multi-colored sprites and smooth sprite movement, but also the tilemap limitations and the somewhat awful sound chip shared with handheld games and sounding very much like it. Coupled with its inferior controllers and TV game style aesthetic, it’s not difficult to see why it would be the last console from this manufacturer.

If forgotten consoles are your thing, have a read about the Fairchild Channel F, the machine that gave us console cartridges.

A Handheld Gaming PC With Steam Deck Vibes

Since its inception, the Steam Deck has been a bit of a game changer in the PC gaming world. The goal of the handheld console was to make PC gaming as easy and straightforward as a walled-garden proprietary console like a Switch or Playstation but still allow for the more open gaming experience of a PC. At its core, though, it’s essentially a standard PC with the parts reorganized into handheld form, and there’s no reason any other small-form-factor PC can’t be made into a similar system. [CNCDan] has the skills and tools needed to do this and shows us how it’s done.

The build is based around a NUC, a small form factor computer that typically uses the same low-power mobile processors and graphics cards found in laptops but without the built-in battery or screen. This one has an AMD Ryzen 7 processor with Radeon graphics, making it reasonably high-performing for its size. After measuring out the dimensions of the small computer and preparing for other components like the battery, joysticks, buttons, and even a trackpad, it was time to create the case. Instead of turning to a 3D printer, this one is instead milled on a CNC machine. Something tells us that [CNCDan] prefers subtractive manufacturing in general.

With all the parts assembled in the case, the build turns into a faithful Steam Deck replica with a few bonuses, like an exposed Ethernet port and the knowledge that everything can easily be fixed since it was built from the ground up in the first place. The other great thing about builds like these is they don’t need an obscure NUC for the hardware; you can always grab your old Framework mainboard for handheld gaming instead. Reminded us of the NucDeck.

Continue reading “A Handheld Gaming PC With Steam Deck Vibes”

A Handheld Replica Sound Voltex Game

Sound Voltex is a music game from Konami; in fact, it’s a whole series of arcade games! [Luke] is a big fan, so decided to build a hardware handheld to play the Unnamed Sound Voltex Clone.  No—Voltex is not a typo, that’s the name.

If you’re unfamiliar, the Unnamed SDVX Clone is basically a community-built game that’s inspired by the original Konami titles. [Luke] decided to build a handheld console for playing the game, which is more akin to the arcade experience versus playing it on a desktop computer.

[Luke’s] build relies on a Raspberry Pi 4B, which donates its considerable processing power and buckets of RAM to the project. The Pi was installed into a 3D-printed case with a battery pack, touchscreen, and speakers, along with multiple arcade buttons  and rotary encoders for controlling the game. Booting the Pi and clicking the icon on the desktop starts up the Unnamed Sound Voltex Clone. The game itself will be fairly familiar to any rhythm game player, though it’s a tough more sophisticated than Audiosurf. [Luke] demonstrates the gameplay on YouTube, and the finished project looks great.

We always love seeing handheld hacks, from PlayStations that never were to retro DIY creations. Video after the break.

Continue reading “A Handheld Replica Sound Voltex Game”

Inside An Arcade Joystick

If you ever played an arcade game and wondered what was inside that joystick you were gripping, [Big Clive] can save you some trouble. He picked up a cheap replacement joystick, which, as you might expect, has a bunch of microswitches. However, as you can see in the video below, there are some surprising features that make sense when you think about it.

For one, there are plates you can put on the bottom to limit the joystick’s travel depending on the game. That is, some games only want the stick to move up and down or left and right. The knobs are quite nice, and [Clive] mentions the size and thread of the knob with the idea you could use them in different applications. You can also buy replacement knobs if you don’t want to get the whole assembly.

The mechanics are rugged but straightforward. The circuit board is surprisingly stylish but also simple. Still interesting to see what’s inside one of these, even though the schematic is extremely simple.

If you need an excuse to use one of these, how about an arcade table? If you aren’t a woodworker, grab a 3D printer instead.

Continue reading “Inside An Arcade Joystick”

Here’s Code For That AI-Generated Minecraft Clone

A little while ago Oasis was showcased on social media, billing itself as the world’s first playable “AI video game” that responds to complex user input in real-time. Code is available on GitHub for a down-scaled local version if you’d like to take a look. There’s a bit more detail and background in the accompanying project write-up, which talks about both the potential as well as the numerous limitations.

We suspect the focus on supporting complex user input (such as mouse look and an item inventory) is what the creators feel distinguishes it meaningfully from AI-generated DOOM. The latter was a concept that demonstrated AI image generators could (kinda) function as real-time game engines.

Image generators are, in a sense, prediction machines. The idea is that by providing a trained model with a short history of what just happened plus the user’s input as context, it can generate a pretty usable prediction of what should happen next, and do it quickly enough to be interactive. Run that in a loop, and you get some pretty impressive clips to put on social media.

It is a neat idea, and we certainly applaud the creativity of bending an image generator to this kind of application, but we can’t help but really notice the limitations. Sit and stare at something, or walk through dark or repetitive areas, and the system loses its grip and things rapidly go in a downward spiral we can only describe as “dreamily broken”.

It may be more a demonstration of a concept than a properly functioning game, but it’s still a very clever way to leverage image generation technology. Although, if you’d prefer AI to keep the game itself untouched take a look at neural networks trained to use the DOOM level creator tools.