Underwater Kites Buoying The Prospect Of More Tidal Power Generation

Swedish start-up Minesto has been for years trying to float the idea of having underwater turbines that generate power for use on-shore. These would be anchored to the seafloor by a long tether and move around in figure-of-eight patterns like a kite, which would increase the flow over the turbine’s blades. After a few years of trials, its 1.2 MW Dragon 12 kite will now be installed off the coast of the Faroe Islands.

Previously, Minesto had installed its much smaller DG500 (0.5 MW) kite turbine at Holyhead Deep, in Wales, where a single unit has been tested at a depth of between 65 and 91 meters. So far, only this unit has seen continuous operation. As noted in the linked Tethys report, this one unit was not connected to the grid, and research on its environmental impact is still ongoing as of September 2022. The main concerns are how it might affect cetaceans (whales, dolphins, etc.), including potential collisions with these as well as diving birds who might end up diving in the midst of a swarm of kites moving about at fairly high speeds.

One of the proposed Minesto Dragon 12 kite array installation sites at the Faroe Islands. (Credit: Minesto)
One of the proposed Minesto Dragon 12 kite array installation sites at the Faroe Islands. (Credit: Minesto)

Although by itself putting a turbine into the much stronger and energetic ocean currents – not to mention near-continuous – makes sense, the marine environment is a tough one to survive. The DG500 prototype has seen a few years of use, but this would be the first large-scale deployment of such a system and thus the first significant long-term durability test. The goal at the Faroe Islands is to install 120 MW of capacity, across four kite groups, joining the smaller Dragon 4 (0.4 MW) unit that was grid-connected in May of last year.

Depending on the results, including the economics, this technology could prove to be either much better and cheaper than off-shore wind turbines, or turn out to be saddled with fundamental flaws that has plagued previous attempts to make use of the strong currents and tides that make the world’s oceans and seas into one of Nature’s most impressive sights.

Hack A Soda Can Into Jewelry

If you’ve ever needed some aluminum for a project, you might have noticed you have easy access to aluminum cans. If you need a cylinder, fine. But what if you don’t? [ThescientistformerlyknownasNaegeli] shows how to create an attractive necklace from two soda cans, and we think the techniques might be usable for other cases where you might need aluminum. If you care more about the necklace, it looks good. You only have to add a 3D-printed clasp or, if you prefer, you can buy a clasp and use that. For the Hackaday crowd, you can also use the resulting structure as an aluminum cable shield, which might better suit you.

The post gives more details and points to other posts for even deeper dives into many of the steps. But the basic idea is you strip the ink from the outside of the can and then cut the can into a strip. The mechanism for that looks a lot like a machine to cut plastic bottles into strips, but that method isn’t feasible without special blades.

Continue reading “Hack A Soda Can Into Jewelry”

Virginia To Get Large-Scale Wind Farm

If you go about 27 miles off the coast of Virginia, you’ll find two windmills jutting up out of the sea. Two windmills aren’t particularly interesting until you realize that these two are on the edge of a 2,100-acre lease that Dominion Energy is placing in Federal water. According to the company, those two will be joined by 176 more windmills on a nearly 113,000-acre adjacent lease. The project has been in the planning and pilot phase for a while, but it was recently given the green light by the US government. You can see a promotional video about the project below. There’s also a video of the first monopiles — the mounts for the windmills — arriving in the area.

The project will eventually have three offshore substations that feed the power to the state military reservation and, from there, to Naval Air Station Oceania, where it feeds the commercial power grid. The final project will power 660,000 homes.

Continue reading “Virginia To Get Large-Scale Wind Farm”

Paperless RFID Tags Are Carbon-Based

RFID tags are great little pieces of technology, but unfortunately, the combination of paper, metal, and silicon means they are as bad as some modern pregnancy tests — single-use electronic devices that can’t be recycled.

Some prototypes of the RFID tags.

A team of design program graduates from London’s Royal College of Art aim to change that. They’ve devised a mostly-paper RFID tag that’s as safe to recycle as a piece of paper with a pencil doodle on it.

The team’s startup, PulpaTronics have created a design that uses paper as its only material. The circuitry is marked on the paper with a laser set to low power, which doesn’t burn or cut the paper, but instead changes to composition to be conductive.

PulpaTronics were also able to create a chip-less RFID tag much the same way, using a pattern of concentric circles to convey information. The company estimates that these tags will reduce carbon dioxide emissions by 70%, when compared with traditional RFID tags. They’ll also cost about half as much.

RFID is used in many industries, but it’s also great for hacking. Here’s an 8-track player that harnesses the power of RFID tags to play songs off of an SD card.

Thanks for the tip, [gir.st]!

DIY Shredder Creates Insulation

Plenty of us have experience with paper shredders, but there are all kinds of machines designed to completely destroy other materials as well, from metal and plastic, to entire cars. [Action BOX] built their own heavy-duty shredder capable of dismantling things like cell phones and other robust handheld objects, but after seeing what it would physically shred they decided to give it an actual job creating insulation for the attic space in their garage.

The shredder itself uses opposing metal plates arranged on sets of two cylinders, with each cylinder powered by it’s own large motor. In total, the entire system uses around 1.5 kW, so to make their green insulation project as green as possible they decided to power it with an equivalent amount of solar panels. For the insulation they’re using a year’s worth of boxes from various deliveries, and after a time-consuming process preparing the boxes for the shredder, shredding the strips of cardboard, and packaging it in garbage bags their efforts netted them enough to partially fill the space between four ceiling joists. Continue reading “DIY Shredder Creates Insulation”

Re-imagining The Water Supply

Getting freshwater supplied across cities and towns in a reliable and safe way is no simple task. Not only is a natural freshwater reservoir or other supply needed, but making sure the water is safe to drink and then shipping it out over a dense network of pumps and pipes can cost a surprising amount of time and money. It also hinges on a reliable power grid, which is something Texas resident [Suburban Biology] doesn’t have. But since fresh water literally falls out of the sky for free, he decided to take this matter into his own hands.

The main strategy with a system like this is to keep the rainwater as clean as possible before storage so that expensive treatment systems are less necessary. That means no asphalt shingles, a way to divert the first bit of rain that washes dust and other contaminants off the roof away, and a safe tank. This install uses a 30,000 gallon tank placed above ground for storage, but that’s not the only thing that goes into a big rainwater catchment system like this. A system of PVC pipes are needed both for sending rainwater from the roofs of the buildings into the tank and for pumping it into the home for use. With all of that in place it’s both a hedge against climate change, unstable electric grids, and even separates the user from the local aquifer which may or may not have its own major issues depending on where you live.

While Texas legally protects the rights of citizens to collect and store rainwater, the same isn’t true for all areas. For example, Colorado only just passed a law allowing the collection and storage of a meager 110 gallons of rainwater and forbade it entirely beforehand. There are some other considerations for a project like this too, largely that above-ground systems generally won’t work in cold climates. On the other hand, large systems like these are really only needed where rainfall is infrequent; in more tropical areas like south Florida a much smaller storage system can be used

Continue reading “Re-imagining The Water Supply”

Can A $3200 Kit Convert Your Car To Electric Power?

Whether hardcore petrolheads like it or not, we appear to be living through the final years of the internal combustion engine. In many countries there are legislative timetables in place for their eventual phasing out, and even those which remain in production are subject to ever more stringent emissions legislation. If there’s a problem with the EVs with which we’re expected to replace our fossil fuel vehicles it’s the cost, those things are still very expensive. An Aussie student has an interesting idea that’s won the James Dyson Prize: a low cost conversion for existing vehicles that bolts onto their rear wheel hubs.

Electric conversion of fossil fuel cars is nothing new, indeed we’ve brought you news of units designed to replace the original engine and transmission. Neither are wheel hub motors new, but the difference with this system is that it doesn’t require significant mechanical modification to the vehicle. It retains the old engine, and this motor sits inside each rear wheel.

It almost seems too good to be true, but a closer reading shows the rotor bolted on one side to the old wheel hub and on the other side to the wheel. The stator meanwhile is bolted to the existing brake caliper mountings. This would lead to a slightly wider track and a greater unsprung weight, but we can see that it would work. Besides the motor there’s a battery pack for the spare wheel well and a set of electrically-powered systems to supply the brake servo vacuum and other services. The idea is that this whole kit could be fitted for 5000 Australian dollars, which is somewhere south of $3200 USD. It’s not perfect and it still involves hauling around the dead weight of an unused engine, but we can see it might still have a niche. If, and that’s a big if, it ever makes it to market, that is.