“Paper” Bottles For Your Fizzy Drinks (And Bottle Rockets)

A story that passed almost unnoticed was that the Coca-Cola company plan to run a limited trial of paper bottles. Wait, paper for a pressurized beverage? The current incarnation still uses a plastic liner and cap but future development will focus on a “bio-based barrier” and a bio composite or paper cap tethered to the vessel.

Given that plastic pollution is now a major global concern this is interesting news, as plastic drinks bottles make a significant contribution to that problem. But it raises several questions, first of all why are we seemingly unable to recycle the bottles in the first place, and given that we have received our milk and juice in paper-based containers for decades why has it taken the soda industry so long?

Plastic soft drink bottles are made from Polyethylene terephthalate or PET, the same polyester polymer as the one used in Dacron or Terylene fabrics. They’re blow-moulded, which is to say that an injection-moulded preform something like a plastic test tube with a screw top fitting is expanded from inside in a mould by compressed gas. As anyone who has experimented with bottle rockets will tell you, they are immensely strong, and as well as being cheap to make and transport they are also readily recyclable when separated from their caps.

Continue reading ““Paper” Bottles For Your Fizzy Drinks (And Bottle Rockets)”

Parts of the automated soil moisture monitoring station

Solar Stevenson Screen For Smart Sprinkler

It’s not infrequent that we see the combination of moisture sensors and water pumps to automate plant maintenance. Each one has a unique take on the idea, though, and solves problems in ways that could be useful for other applications as well. [Emiliano Valencia] approached the project with a few notable technologies worth gleaning, and did a nice writeup of his “Autonomous Solar Powered Irrigation Monitoring Station” (named Steve Waters as less of a mouthful).

Of particular interest was [Emiliano]’s solution for 3D printing a threaded rod; lay it flat and shave off the top and bottom. You didn’t need the whole thread anyway, did you? Despite the relatively limited number of GPIO pins on the ESP8266, the station has three analog sensors via an ADS1115 ADC to I2C, a BME280 for temperature, pressure, and humidity (also on the I2C bus), and two MOSFETs for controlling valves. For power, a solar cell on top of the enclosure charges an 18650 cell. Communication over wireless goes to Thingspeak, where a nice dashboard displays everything you could want. The whole idea of the Stevenson Screen is clever as well, and while this one is 3D printed, it seems any kind of stacking container could be modified to serve the same purpose and achieve any size by stacking more units. We’re skeptical about bugs getting in the electronics, though.

We recently saw an ESP32-based capacitive moisture sensor on a single PCB sending via MQTT, and we’ve seen [Emiliano] produce other high quality content etching PCBs with a vinyl cutter.

Is It A Lawnmower? Is It An RPi IRC Server? It’s Both!

Although first presented to the world as an April 1st joke, [Jotun]’s IRC-enabled lawnmower began life as the result of casual bantering among folk on the Undernet IRC network. When the project worked out better than probably anyone could have expected, it was presented as the Green Future of Undernet on April 1st. Joking aside, the project actually is pretty interesting and well-executed.

At the core is a Remington RM110, a fairly basic gas-powered push lawnmower. After years of use it wasn’t running so well any more, so [Jotun] took it apart and cleaned the engine, despite never having done so before. With that grimy task completed, a subsequent remark in an Undernet channel about linking the lawnmower to Undernet led to a Raspberry Pi 4 and various other components being ordered.

The view from the driver’s seat with the server box installed.

The write-up by [Jotun] provides a pretty good overview of the project’s history: from getting the Raspberry Pi 4 working with a UPS add-on, to getting the IRC server software working and serving clients, and putting a weather- and dust-proof box together with enough filtered ventilation to ensure that the freshly mowed grass doesn’t clog up the Raspberry Pi while keeping everything cool.

As a bonus, the system tracks the wheel revolutions so that [Jotun] can keep track of the square kilometers of grass he has cut, and reports this with an IRC bot to anyone interested on Undernet, in the channel #lawnmower. The only thing that isn’t working well yet so far is the live camera feed from the lawnmower, due to the obvious vibration issues, but [Jotun] reckons that can be solved in time.

 

The Simplest Wind Turbine Is The Most Satisfying

Sometimes there’s a satisfaction to be found not in the more complex projects but the simplest ones. We’ve featured wind turbines of all types here at Hackaday over the years, but HowToLou’s one is probably one of the least sophisticated. That notwithstanding, it does its job admirably, and provides a handy reminder of a parts source many of us might have overlooked.

At its heart is a motor from an exercise treadmill, which appears to be quite a powerful DC motor so that’s a source worth noting away for any future projects. To that he attaches the blades from a desk fan, and when placed outdoors on a windy day it generates enough power to run an LED head torch and charge his phone.

Of course, this most basic of wind turbines is not displaying its true potential in the video below the break. Were it mounted in a high position free from ground based wind obstacles it would no doubt catch a lot more wind, and in particular were it hooked up to a charge controller and a battery it could provide a much more useful power source. Then you could start optimizing fan blade designs… But this is a fun project that isn’t trying to masquerade as anything sophisticated, and it still has that potential.

This isn’t the first such simple turbine we’ve brought you.

Continue reading “The Simplest Wind Turbine Is The Most Satisfying”

Ford And HP Teamed Up To Drive Down Plastic Waste

This mass manufacturer movement towards electric cars is one thing, but what about sustainability on the plastic part production line? Ford and HP have teamed up to turn used 3D printed parts and powders into pellets that will be fodder for injection-molded parts — specifically the fuel-line clips for Super Duty F250 trucks.

Two of the sustainably-made fuel clips.

According to Ford’s press release, their goal is to reach 100% sustainable materials in all their vehicles, not just the diesel-drinking Super Duty. Their research team found ten other Fords whose existing fuel-line clips could instead be made sustainably, and the company plans to implement the recycled plastic clips on all future models.

There are all sorts of positives at play here: the recycled clips cost 10% less to make and end up weighing 7% less than traditionally-made clips, all the while managing to be more chemical and moisture resistant.

And so much plastic will be kept out of landfills, especially once this idea takes off and more manufacturers get involved with HP or form other partnerships. One of the sources of Ford’s plastic is Smile Direct Club, which has 60 printers cranking out over 40,000 dental aligners every day.

There’s more than one way to combine 3D printing and sustainability. Did someone say fungal sound absorbers?

[Images via Ford]

There’s A Fungus Among Us That Absorbs Sound And Does Much More

Ding dong, the office is dead — at least we hope it is. We miss some of the people, the popcorn machine, and the printer most of all, but we say good riddance to the collective noise. Thankfully, we never had to suffer in an open office.

For many of us, yours truly included, home has become the place where we spend approximately 95% of our time. Home is now an all-purpose space for work, play, and everything in between, like anxiety-induced online shopping. But unless you live alone in a secluded area and/or a concrete bunker, there are plenty of sound-based distractions all day and night that emanate from both inside and outside the house. Headphones are a decent solution, but wearing them isn’t always practical and gets old after a while. Wouldn’t it be nice to be able to print your own customized sound absorbers and stick them on the walls? Continue reading “There’s A Fungus Among Us That Absorbs Sound And Does Much More”

Give Your Smart Home A Green Thumb With MQTT

We have all been stuck inside for too long, and maybe that’s why we have recently seen a number of projects attempting to help humans take better care of their housemates from Kingdom Plantae. To survive, plants need nutrients, light, and water. That last one seems tricky to get right; not too dry and not drowning them either, so [rbaron’s] green solder-masked w-parasite wireless soil monitor turns this responsibility over to your existing home automation system.

w-parasite MQTT diagram

Like this low-power soil sensor project and the custom controller for six soil sensors, [rbaron’s] w-parasite uses a “parasitic capacitive” moisture sensor to determine if it’s time to water plants. This means that unlike resistive soil moisture sensors, here the copper traces are protected from corrosion by the solder mask. For those wondering how they work, [rbaron]’s Twitter thread has a great explanation.

The “w” in the name is for WiFi as the built-in ESP-32 module then takes the moisture reading and sends an update wirelessly via MQTT. Depending on the IQ of your smart-home setup, you could log the data, route an alert to a cellphone, light up a smart-bulb, or even switch on an irrigation system.

w-parasite circuit board in a potted plant[rbaron] has shared a string of wireless hacks, controlling the A/C over Slack and a BLE Fitness Tracker that inspired more soldering than jogging. We like how streamlined this solution is, with the sensor, ESP-32 module, and battery all in a compact single board design. Are you asking yourself, “but how is a power-hungry ESP-32 going to last longer than it takes for my geraniums to dry out?” [rbaron] is using deep sleep that only consumes 15uA between very quick 500ms check-ins. The rechargeable LIR2450 Li-Ion coin cell shown here can transmit a reading every half hour for 90 days. If you need something that lasts longer than that, use [rbaron]’s handy spreadsheet to choose larger batteries that last a whole year. Though, let’s hope we don’t have to spend another whole year inside with our plant friends.

We may never know why the weeds in the cracks of city streets do better than our houseplants, but hopefully, we can keep our green roommates alive (slightly longer) with a little digital nudge.