Open-Source Random Numbers

Whether it’s a game of D&D or encrypting top-secret information, a wide array of methods are available for generating the needed random numbers with high enough entropy for their use case. For a tabletop game this might be a single die but for more sensitive applications a more robust method of generating random numbers is needed. Programmers might reach for a rand() function of some sort, but these pseudorandom numbers don’t cut the mustard for encryption. For that you’ll need a true random number generator (RNG), and this open-source hardware RNG uses one of the better methods we’ve seen.

The device, called RAVA, is based on a property found in many electronic devices called avalanche breakdown. Avalanche breakdown occurs when a high voltage (in this case approximately 25V) is applied in the reverse bias direction, with this device using a pair of Zener diodes. When this high voltage is applied, an “avalanche” of electrons occurs which allows the diodes conduct in the opposite direction that they would when they are forward biased. This isn’t a constant current flow, though; there are slight variations over time which can be amplified and used as the random number generator. The noise is amplified over a series of op amps and then fed to an ATmega32U4 microcontroller which can provide the user with 136.0 Kbit/s of random data.

Unlike other random number generators, this device is based on a method generally accepted to be truly random. Not only that, but since it’s based on discrete hardware it can be accessed directly for monitoring and replacement in case of faults, unlike other methods which are more “black boxes” and are more opaque in their processes which are thus harder to audit. We also appreciate it’s open-source nature as well, and for some more information on it be sure to check out the paper on it in IEEE. If you’re looking for something to generate random numbers but will also bring some extra flair to the next game night, take a look at this radioactive dice replacement.

Close up of a custom optical HDMI cable on a desk

Let There Be Light: The Engineering Of Optical HDMI

In a recent video, [Shahriar] from The Signal Path has unveiled the intricate design and architecture of optical HDMI cables, offering a cost-effective solution to extend HDMI 2.0 connections beyond the limitations of traditional copper links. This exploration is particularly captivating for those passionate about innovative hardware hacks and signal transmission technologies.

[Shahriar] begins by dissecting the fundamentals of HDMI high-speed data transmission, focusing on the Transition Minimized Differential Signaling (TMDS) standard. He then transitions to the challenges of converting from twisted-pair copper to optical lanes, emphasizing the pivotal roles of Vertical-Cavity Surface-Emitting Lasers (VCSELs) and PIN photodiodes. These components are essential for transforming electrical signals into optical ones and vice versa, enabling data transmission over greater distances without significant signal degradation.

A standout aspect of this teardown is the detailed examination of the optical modules, highlighting the use of free-space optics and optical confinement techniques with lasers and detectors. [Shahriar] captures the eye diagram of the received high-speed lane and confirms the VCSELs’ optical wavelength at 850 nm. Additionally, he provides a microscopic inspection of the TX and RX chips, revealing the intricate VCSEL and photodetector arrays. His thorough analysis offers invaluable insights into the electronic architecture of optical HDMI cables, shedding light on the complexities of signal integrity and the innovative solutions employed to overcome them.

For enthusiasts eager to take a deeper look into the nuances of optical HDMI technology, [Shahriar]’s comprehensive teardown serves as an excellent resource. It not only gives an insight in the components and design choices involved, but also inspires further exploration into enhancing data transmission methods.

Continue reading “Let There Be Light: The Engineering Of Optical HDMI”

Man using a table saw with a VR headset on

Chop, Chop, Chop: Trying Out VR For Woodworking

Virtual Reality in woodworking sounds like a recipe for disaster—or at least a few missing fingers. But [The Swedish Maker] decided to put this concept to the test, diving into a full woodworking project while wearing a Meta Quest 3. You can check out the full experiment here, but let’s break down the highs, lows, and slightly terrifying moments of this unconventional build.

The plan: complete a full furniture build while using the VR headset for everything—from sketching ideas to cutting plywood. The Meta Quest 3’s passthrough mode provided a semi-transparent AR view, allowing [The Swedish Maker] to see real-world tools while overlaying digital plans. Sounds futuristic, right? Well, the reality was more like a VR fever dream. Depth perception was off, measuring was a struggle, and working through a screen-delayed headset was nauseating at best. Yet, despite the warped visuals, the experiment uncovered some surprising advantages—like the ability to overlay PDFs in real-time without constantly running back to a computer.

So is VR useful to the future of woodworking? If you’re a woodworking novice, you might steer clear from VR and read up on the basics first. For the more seasoned: maybe, when headsets evolve beyond their current limitations. For now, it’s a hilarious, slightly terrifying experiment that might just inspire the next wave of augmented reality workshops. If you’re more into electronics, we did cover the possibilities with AR some time ago. We’re curious to know your thoughts on this development in the comments!

Continue reading “Chop, Chop, Chop: Trying Out VR For Woodworking”

Your Favorite Basic Oscilloscope Operation Guide?

Like many pieces of lab equipment, oscilloscopes are both extremely useful and rather intimidating to a fledgling user. Unlike a digital multimeter with its point-and-measure functionality, digital storage oscilloscopes (DSOs) require fundamental knowledge before they can be used properly. Yet at the same time nobody likes reading manuals, so what is one to do? Try the Absolute Beginner’s Guide to DSOs  by [Arthur Pini]

[Pini’s] Cliff’s Notes version of your scope’s manual isn’t half bad. It covers the basic user interface and usage of a (stand-alone) DSO. Unfortunately, it focuses a bit too much on a fancy touch-screen Teledyne LeCroy MSO rather than something the average hobbyist is likely to have lying around.

We rather like the PSA-type videos such as the classic ‘“How not to blow up your oscilloscope” video by [Dave] over at EEVBlog. Many guides and introductions cover “what to do,” but covering common safety issues like improper grounding, isolation, or voltages might be a better place to start.

What tutorial or reference work would you hand to an oscilloscope newbie? We can endorse a hands-on approach with a suitable test board. We also enjoyed [Alan’s] video on the topic. Even if you are an old hand, do you know how to use all those strange trigger modes?

Continue reading “Your Favorite Basic Oscilloscope Operation Guide?”

Investigating Electromagnetic Magic In Obsolete Machines

Before the digital age, when transistors were expensive, unreliable, and/or nonexistent, engineers had to use other tricks to do things that we take for granted nowadays. Motor positioning, for example, wasn’t as straightforward as using a rotary encoder and a microcontroller. There are a few other ways of doing this, though, and [Void Electronics] walks us through an older piece of technology called a synchro (or selsyn) which uses a motor with a special set of windings to keep track of its position and even output that position on a second motor without any digital processing or microcontrollers.

Synchros are electromagnetic devices similar to transformers, where a set of windings induces a voltage on another set, but they also have a movable rotor like an electric motor. When the rotor is energized, the output windings generate voltages corresponding to the rotor’s angle, which are then transmitted to another synchro. This second device, if mechanically free to move, will align its rotor to match the first. Both devices must be powered by the same AC source to maintain phase alignment, ensuring their magnetic fields remain synchronized and their rotors stay in step.

While largely obsolete now, there are a few places where these machines are still in use. One is in places where high reliability or ruggedness is needed, such as instrumentation for airplanes or control systems or for the electric grid and its associated control infrastructure. For more information on how they work, [Al Williams] wrote a detailed article about them a few years ago.

Continue reading “Investigating Electromagnetic Magic In Obsolete Machines”

Handy Online Metric Screw, Nut, And Washer Generator

For those times when you could really use a quick 3D model, this metric screw generator will do the trick for screws between M2 and M16 with matching nuts and washers. Fastener hardware is pretty accessible, but one never knows when a 3D printed piece will hit the spot. One might even be surprised what can be usefully printed on a decent 3D printer at something like 0.08 mm layer height.

Behind the scenes, [Jason]’s tool is an OpenSCAD script with a very slick web-based interface that allows easy customization of just about any element one might need to adjust, including fine-tuning the thread sizing. We’re fans of OpenSCAD here and appreciate what’s going on behind the scenes, but one doesn’t need to know anything about it to use the online tool.

Generated models can be downloaded as .3mf or .stl, but if you really need a CAD model you’re probably best off looking up a part and downloading the matching 3D model from a supplier like McMaster-Carr.

Prefer to just use the OpenSCAD script yourself, instead of the web interface? Select “Download STL/CAD Files” from the dropdown of the project page to download ScrewGenerator.scad for local use, and you’re off to the races.

A dismantled drill on a cluttered workbench

Going Brushless: Salvaging A Dead Drill

Let’s face it—seeing a good tool go to waste is heartbreaking. So when his cordless drill’s motor gave up after some unfortunate exposure to the elements, [Chaz] wasn’t about to bin it. Instead, he embarked on a brave journey to breathe new life into the machine by swapping its dying brushed motor for a sleek brushless upgrade.

Things got real as [Chaz] dismantled the drill, comparing its guts to a salvaged portable bandsaw motor. What looked like an easy swap soon became a true hacker’s challenge: incompatible gear systems, dodgy windings, and warped laminations. Not discouraged by that, he dreamed up a hybrid solution: 3D-printing a custom adapter to make the brushless motor fit snugly into the existing housing.

The trickiest part was designing a speed control mechanism for the brushless motor—an impressively solved puzzle. After some serious elbow grease and ingenuity, the franken-drill emerged better than ever. We’ve seen some brushless hacks before, and this is worth adding to the list. A great tool hack and successful way to save an old beloved drill. Go ahead and check out the video below!

Continue reading “Going Brushless: Salvaging A Dead Drill”