Engineering And Artistry Meet An Untimely End At Burning Man

Burning Man is so many different things to so many people, that it defies neat description. For those who attend, it always seems to be a life-changing experience, for good or for ill. The story of one man’s Burning Man exhibition is a lesson in true craftsmanship and mind-boggling engineering, as well as how some events can bring out the worst in people.

For [Malcolm Tibbets], aka [the tahoeturner], Burning Man 2017 was a new experience. Having visited last year’s desert saturnalia to see his son [Andy]’s exhibition, the studio artist decided to undertake a massive display in his medium of choice — segmented woodturning. Not content to display a bamboo Death Star, [Malcolm] went big– really big. He cut and glued 31,000 pieces of redwood into rings of various shapes and sizes and built sculptures of amazing complexity, including endless tubes that knot and loop around and back into each other. Many of the sculpture were suspended from a huge steel tripod fabricated by [Andy], forming an interactive mobile and kinetic sculpture.

Alas, Burning Man isn’t all mellowness in the desert. People tried to climb the tripod, and overnight someone destroyed some of the bigger elements of the installation. [Malcolm] made a follow-up video about the vandalism, but you’ll want to watch the build video below first to truly appreciate the scale of the piece and the loss. Here’s hoping that [Malcolm]’s next display is treated with a little more respect, like this interactive oasis from BM 2016 apparently was.

Thanks to [Keith Olson] for the tip.

Enresoning An IPhone 8 Ring

The iPhone 8 was just released last week, and that means some people were standing in line in front of an Apple store for hours waiting to get their hands on the latest and greatest glowing rectangle. [Patrick Adair] had a better idea: he would stand in front of an Apple store for four hours, then do something productive with his new smartphone. With the help of a waterjet, some resin, a lathe, and some very fine grades of sandpaper, he created the Apple Ring.

Setting aside the whole process of actually acquiring an iPhone 8 on launch day, the process of turning an iPhone into a ring is more or less what you would expect. First, the iPhone was cut into ring-shaped pieces on a waterjet cutter. Special care was taken to avoid the battery, and in the end [Patrick] was able to get a nice chunk ‘o phone that included the camera lens.

This ring piece was then embedded in clear resin. For this, [Patrick] used Alumilite epoxy, a pressure pot, and a toaster oven to cure the resin. Once the phone parts were firmly encased for the rest of eternity, the ring blank moved over to the lathe. The center of the ring was bored out, and the process of sanding, polishing and gluing in all the tiny parts that fell out during the process commenced. The end result actually looks pretty great, and even though it’s probably a little too bulky, it is a remarkable demonstration of the craft of turning.

You can check out [Patrick]’s video below, along with a video from the Waterjet Channel showing the deconstruction of a glowing rectangle.

Continue reading “Enresoning An IPhone 8 Ring”

Hand-Carving Geometric Art

[Scott Cramer] is a retired professional woodworker who specializes in geometric art made from beautifully joined wood. In this project he’s carving four interlocked cloverleaf rings from a block of basswood. First he made a series of cuts to turn the block into a cuboctahedron, a geometric solid comprising six squares and eight triangles. Then he drew on the basic lines of the rings on the wood and went to work with a chisel, smoothing and separating the rings and carving out the interior. You can see more shots of the project on his Facebook post, which is included after the break.

To see more of [Scott]’s projects you can follow his Twitter feed. Our favorites include this 70″ pentagonal icosatetrahedron built out of hemlock that [Scott] says is the “largest in Coös County, NH” — what, there are others? He also made a magogany representation of a Hamiltonian circuit of a dodecahedron’s vertices.

We love math art on Hackaday — see our interview with Francisco do Comité we ran earlier this year.

Continue reading “Hand-Carving Geometric Art”

DIY LiPo Protectors

Spiderman’s Uncle Ben was known to say, “With great power comes great responsibility.” The same holds true for battery power. [Andreas] wanted to use protected 18650 cells, but didn’t want to buy them off the shelf. He found a forty cent solution. Not only can you see it in the video, below, but he also explains and demonstrates what the circuit is doing and why.

Protection is important with LiPo technology. Sure, LiPo cells have changed the way we use portable electronics, but they can be dangerous. If you overcharge them or allow them to go completely dead and then charge them, they can catch fire. Because they have a low source resistance — something that is usually desirable — short-circuiting them can also create a fire hazard. We’ve covered the chemistry in depth, but to prevent all the badness you’ll want a charger circuit.

Continue reading “DIY LiPo Protectors”

Pulleys Within Pulleys Form A Unique Transmission For Robots

After a couple of millennia of fiddling with gears, you’d think there wouldn’t be much new ground to explore in the field of power transmission. And then you see something like an infinitely variable transmission built from nested pulleys, and you realize there’s always room for improvement.

The electric motors generally used in robotics can be extremely efficient, often topping 90% efficiency at high speed and low torque. Slap on a traditional fixed-ratio gearbox, or change the input speed, and efficiency is lost. An infinitely variable transmission, like [Alexander Kernbaum]’s cleverly named Inception Drive, allows the motor to stay at peak efficiency while smoothly changing the gear ratio through a wide range.

The mechanism takes a bit of thought to fully grok, but it basically uses a pair of split pulleys with variable spacing. The input shaft rotates the inner pulley eccentrically, which effectively “walks” a wide V-belt around a fixed outer pulley. This drives the inner pulley at a ratio depending on the spacing of the pulley halves; the transmission can shift smoothly from forward to reverse and even keep itself in neutral. The video below will help you get your head around it.

We’ve seen a couple of innovative transmissions around here lately; some, like this strain-wave gear and this planetary gearbox, are amenable to 3D printing. Looks like the Inception Drive could be printed too. Hackers, start your printers and see what this drive can do.

Continue reading “Pulleys Within Pulleys Form A Unique Transmission For Robots”

Fun-Size Geiger Counter Sits Atop A 9-Volt Battery

Want a little heads-up before walking into a potentially dangerous radioactive area? Sure, we all do. But the typical surplus Civil Defense Geiger counter is just too bulky to fit into the sleek, modern every-day carry of the smartphone age. So why not slim down your first line of defense against achieving mutant status with this tiny Geiger counter (Facebook)?

We jest about the use cases for a personal-sized Geiger counter, as [Ian King]’s inspiration for this miniaturized build was based more on a fascination with quantifying the unseen world around us. Details are thin in his post, but [Ian] kindly shared the backstory for this build with us. Working on a budget and mostly with spare parts, the big outlay in the BOM was $20 for a Soviet-era SBM-10 tube, itself a marvel of miniaturization. While waiting the two months needed for the tube to arrive, [Ian] whipped up a perf board circuit with a simple oscillator and a CFL transformer to provide the 400 volts needed for the tube. The whole circuit, complete with tiny speaker and an LED to indicate pulses, sits neatly on top of a 9-volt battery. The video below shows it in action with a test source.

Geiger counters are not exactly rare projects on Hackaday, and with good reason. Take a look at this no-solder scrap bin counter or this traveling GPS Geiger counter built dead-bug style.

Continue reading “Fun-Size Geiger Counter Sits Atop A 9-Volt Battery”

Chest Of Drawers Stores Audio Memories

Some people collect stamps, some collect barbed wire, and some people even collect little bits of silicon and plastic. But the charmingly named [videoschmideo] collects memories, mostly of his travels around the world with his wife. Trinkets and treasures are easy to keep track of, but he found that storing the audio clips he collects a bit more challenging. Until he built this audio memory chest, that is.

Granted, you might not be a collector of something as intangible as audio files, and even if you are, it seems like Google Drive or Dropbox might be the more sensible place to store them. But the sensible way isn’t always the best way, and we really like this idea. Starting with what looks like an old card catalog file — hands up if you’ve ever greedily eyed a defunct card catalog in a library and wondered if it would fit in your shop for parts storage — [videoschmideo] outfitted 16 drawers with sensors to detect when they’re opened. Two of the drawers were replaced by speaker grilles, and an SD card stores all the audio files. When a drawer is opened, a random clip from that memory is played while you look through the seashells, postcards, and what-have-yous. Extra points for using an old-school typewriter for the drawer labels, and for using old card catalog cards for the playlists.

This is a simple idea, but a powerful one, and we really like the execution here. This one manages to simultaneously put us in the mood for some world travel and a trip to a real library.

Continue reading “Chest Of Drawers Stores Audio Memories”