Getting Into NMR Without The Superconducting Magnet

Exploring the mysteries of quantum mechanics surely seems like an endeavor that requires room-sized equipment and racks of electronics, along with large buckets of grant money, to accomplish. And while that’s generally true, there’s quite a lot that can be accomplished on a considerably more modest budget, as this as-simple-as-it-gets nuclear magnetic resonance spectroscope amply demonstrates.

First things first: Does the “magnetic resonance” part of “NMR” bear any relationship to magnetic resonance imaging? Indeed it does, as the technique of lining up nuclei in a magnetic field, perturbing them with an electromagnetic field, and receiving the resultant RF signals as the nuclei snap back to their original spin state lies at the heart of both. And while MRI scanners and the large NMR spectrometers used in analytical chemistry labs both use extremely powerful magnetic fields, [Andy Nicol] shows us that even the Earth’s magnetic field can be used for NMR.

[Andy]’s NMR setup couldn’t be simpler. It consists of a coil of enameled copper wire wound on a 40 mm PVC tube and a simple control box with nothing more than a switch and a couple of capacitors. The only fancy bit is a USB audio interface, which is used to amplify and digitize the 2-kHz-ish signal generated by hydrogen atoms when they precess in Earth’s extremely weak magnetic field. A tripod stripped of all ferrous metal parts is also handy, as this setup needs to be outdoors where interfering magnetic fields can be minimized. In use, the coil is charged with a LiPo battery for about 10 seconds before being rapidly switched to the input of the USB amp. The resulting resonance signal is visualized using the waterfall display on SDR#.

[Andy] includes a lot of helpful tips in his excellent write-up, like tuning the coil with capacitors, minimizing noise, and estimating the exact resonance frequency expected based on the strength of the local magnetic field. It’s a great project and a good explanation of how NMR works. And it’s nowhere near as loud as an MRI scanner.

Automatic Coin Sorter Brings Order To Your Coin Jar

Few things hold as much promise as the old coin jar. Unfortunately, what’s generally promised is tedium, as one faces the prospect of manually sorting, counting, and rolling the accumulated change of cash transactions past. Unless, of course, you’ve got a fancy automatic coin sorter like this one.

True, many banks have automatic coin sorters, but you generally have to be a paying customer to use one. And there’s always Coinstar and similar kiosks, but they always find a way to extract a fee, one way or another. [Fraens] decided not to fall for either of those traps and roll his own machine, largely from 3D-printed parts. The basic mechanism is similar to that used in commercial coin counters, with an angled bowl rotating over an array of holes sized to fit various coins. Holes in the bottom of the feed bowl accept coins fed from a hopper and transport them up to the coin holes. The smallest coins fall out of the bowl first, followed by the bigger coins; each coin drops into a separate bin after passing through an optical sensor to count the number of each on an Arduino. Subtotals and a grand total of the haul are displayed on a small LCD screen. The video below shows the build and the sorter in operation.

[Fraens] built this sorter specifically for Euro coins, but it should be easy enough to modify the sorting slots for different currencies. It’s not the first coin sorter we’ve seen, of course, and while we applaud its design simplicity and efficient operation, it can’t hold a candle to the style of this decidedly less practical approach.

Continue reading “Automatic Coin Sorter Brings Order To Your Coin Jar”

The Art And Science Of Making Beautiful Transparent Ice

For most of us, ice isn’t something we’ve thought about in detail since our high school science classes. For most of us, we pour some tap water into the ice trays, slam it in the freezer, and forget about it. Then we lob the frozen misshapen cubes into a beer and enjoy a quite literally ice-cold beverage.

However, there’s so much more fun to be had with ice if you really get into it. If you’ve ever wondered how pretentious cocktail bars make their fancy ice spheres or transparent cubes, read on!

Continue reading “The Art And Science Of Making Beautiful Transparent Ice”

The Wizard Of Semiconductors

If you have three hours and you want to learn the fundamentals of semiconductors, [Tiny Tapeout] has something for you: An introduction to SiliWiz. You’ll also need the SiliWiz software (or use it online), which resembles the kind of tools that chip designers use but is meant for students to use as a learning tool

Using SiliWiz, you create layers on a virtual device, and you can use Spice to view the results. The tutorial is meant to be high-level and is suggested for students aged 14 or over (but we liked it and we are quite a bit older than that). Some more advanced material is also available at the same site.

Continue reading “The Wizard Of Semiconductors”

LTE Sniffer Ferrets Out Cellular Communications

LTE networks have taken over from older technologies like GSM in much of the world. Outfitted with the right hardware, like a software defined radio, and the right software, it’s theoretically possible to sniff some of this data for yourself. The LTESniffer project was built to do just this. 

LTESniffer is able to sniff downlink traffic from base stations using a USRP B210 SDR, outfitted with two antennas. If you want to sniff uplink traffic, though, you’ll need to upgrade to an X310 with two daughterboards fitted. This is due to the timing vagaries of LTE communication. Other solutions can work however, particularly if you just care about downlink traffic.

If you’ve got that hardware though, you’re ready to go. The software will help pull out LTE signals from the air, though it bears noting that it’s only designed to work with unencrypted traffic. It won’t help you capture the encrypted communications of network users, though it can show you various information like IMSI numbers of devices on the network. Local regulations may prevent you legally even doing this, and if so, the project readme recommends setting up your own LTE network to experiment with instead.

Cellular sniffing has always been somewhat obscure and arcane, given the difficulty and encryption involved, to say nothing of the legal implications. Regardless, some hackers will always pursue a greater knowledge of the technology around them. If you’ve been doing just that, let us know what you’re working on via the tipsline.

Toothbrush Speed Controller Secrets Revealed

Typically, when we want to build something with a DC motor, we might grab a bunch of AAs, or a single lithium cell at the very least. Electric toothbrushes often run on more humble power sources, like a single NiMH battery. They’re designed to get useful motion out of just 1.2V, and [Marian Hryntsiv] has taken a look at what makes them tick.

The article focuses on an electric toothbrush built around the Low Voltage GreenPAK™ SLG47513 chip. It’s designed to work at voltages from just 1 to 1.65 V. To make the most of the limited power available, the toothbrush stays in sleep mode most of the time when it’s not working in oral health.

[Marian] steps through the various parts of the circuit, and also explains the unique functionality baked into the brush. Of particular interest are the timer routines that guide the user through brushing each section of the mouth in turn, before a notification that tells them that 2 minutes of brushing time has elapsed. There’s also a useful explanation of the inductive charging method used.

Electric toothbrushes may be mundane home items today, but they’re an example of a product that has largely already been optimized to the nth degree. Until laser-based plaque removal or enamel regeneration technology gets off the ground, this is as good as it gets. We can dream, though!

 

Hackaday Prize 2023: A DIY Voice-Control Module

If science fiction taught us anything, it’s that voice control was going to be the human-machine interface of the future. [Dennis] has now whipped up a tutorial that lets you add a voice control module to any of your own projects.

The voice control module uses a Raspberry Pi 4 as the brains of the operation, paired with a Seeed Studio ReSpeaker 4-microphone array. The Pi provides a good amount of processing power to crunch through the audio, while the mic array captures high-quality audio from any direction, which is key to reliable performance. Rhasspy is used as the software element, which is responsible for processing audio in a variety of languages to determine what the user is asking for. Based on the voice commands received, Rhasspy can then run just about anything you could possibly require, from sending MQTT smart home commands to running external programs.

If you’ve always dreamed of whipping up your own version of Jarvis from Iron Man, or you just want a non-cloud solution to turn your lights on and off, [Dennis’s] tutorial is a great place to start. Video after the break.

Continue reading “Hackaday Prize 2023: A DIY Voice-Control Module”