Build A Super Cheap RC Trainer Plane With Foam

Once upon a time, RC planes were expensive models that took months to build and big money to equip with electronics. Since the 20th century though, powerful batteries have become cheap, as have servos and radio controllers. Combine them with a bit of old packing material and you can get a little RC trainer up and running for peanuts, as [Samm Sheperd] demonstrates.

[Samm] started referring to this as the “$5 trainer,” though he admits that it will cost more than that if you don’t have some bits and pieces laying around. He demonstrates how to cut cheap foamboard with a hot guitar string, and how to form it into a viable wing. That’s the most crucial part, with the fuselage and tail surfaces relatively simple by comparison. With that complete, it’s as simple as bolting on a motor, some servos, and control horns, and you’re up and running. You can even whip up a landing gear if you’re so inclined! Then, figure out your center of gravity, get it right, and then you’re pretty much ready to fly.

It’s a great primer on how to build a basic RC model, and if you do it right, it should have pretty forgiving handling, too. Plus, it’s so cheap that it should be easy to repair if you crash. Happy modelling! Video after the break.

Continue reading “Build A Super Cheap RC Trainer Plane With Foam”

High-Speed Jelly Launcher Destroys Toast

You shouldn’t play with your food. Unless you’re designing some kind of portable cannon to fling it across the room. That’s precisely what [Backhaul Studios] did.

The first step of designing the condiment cannon was deciding what it should fire. Little low-profile tubs of jelly ended up being the ideal. They were stout enough to survive high-speed flight, while their low height was good for aerodynamics. The cannon itself is built from metal and 3D-printed parts. Multiple iterations eventually landed on a flywheel launcher design with big brushless motors and large 6-inch discs. It sounds positively awful in action and can fling jam (jelly) packets at immense speed. From there, it was simply necessary to design a magazine feed system to enable high-speed full-auto jelly delivery.

If you’ve ever hucked ketchup packets at a brick wall, you’ve understood the joy of splattering condiments everywhere. This cannon is just a way to do that faster and more hilariously. We’ve seen other fun builds along these lines before, too. Video after the break.

Continue reading “High-Speed Jelly Launcher Destroys Toast”

Humble 555 Gets A Boost For ESR Meter

[Peter Demchenko] wanted to use a low power TS555 in an ESR meter design. The problem is, he needed to handle significant current sink requirements for cases where the capacitor under test had a low ESR. The TS555 wasn’t up to the task.

However, [Peter] made an interesting observation. the output pin of the device can sink or source current. However, the discharge pin is exactly the same output but can only sink current.

But what if you tied them together? Using some equalizing resistors, that’s exactly what he did, and this roughly doubles the rated current sink capability. According to [Peter], you do make the circuit more sensitive to power supply variations, but that could be an acceptable trade, depending on your application.

Continue reading “Humble 555 Gets A Boost For ESR Meter”

A Little Optical Magic Makes This Floating Display Pop

If there’s a reason that fancy holographic displays that respond to gestures are a science fiction staple, it’s probably because our current display technology is terrible. Oh sure, Retina displays and big curved gaming monitors are things of wonder, but they’re also things that occupy space even when they’re off — hence the yearning for a display that can appear and disappear at need.

Now, we’re not sure if [Maker Mac70]’s floating display is the answer to your sci-fi dreams, but it’s still pretty cool. And, as with the best of tricks, it’s all done with mirrors. The idea is to use a combination of a partially reflective mirror, a sheet of retroreflective material, and a bright LCD panel. These are set up in an equilateral triangle arrangement, with the partially reflective mirror at the top. Part of the light from the LCD bounces off the bottom surface of the mirror onto a retroreflector — [Mac] used a sheet of material similar to what’s used on traffic signs. True to its name, the retroreflector bounces the light directly back at the semi-transparent mirror, passing through it to focus on a point in space above the whole contraption. To make the display interactive, [Mac] used a trio of cheap time-of-flight (TOF) sensors to watch for fingers poking into the space into which the display is projected. It seemed to work well enough after some tweaking; you can check it out in the video below, which also has some great tips on greebling, if that’s your thing.

We suspect that the thumbnail for the video is a composite, but that’s understandable since the conditions for viewing such a display have to be just right in terms of ambient light level and the viewer’s position relative to the display. [Mac] even mentions the narrow acceptance angle of the display, touting it as a potential benefit for use cases where privacy is a concern. In any case, it’s very different from his last sci-fi-inspired volumetric display, which was pretty cool too.

Continue reading “A Little Optical Magic Makes This Floating Display Pop”

You Can Get A Precision Instrument-Guided Landing Even In Antarctica

Traditional airports spend big money to install instrument landing systems (ILS) to guide planes in safely. In places like Antarctica, though, it’s simply not possible to permanently install a massive antenna array for localization, particularly with all the ice shifting about on the regular. As covered by Flightradar24, the solution to this is to use a transponder landing system (TLS) instead.

Comparatively compact! Credit: ANPC

A TLS tracks planes by using multilateration—basically, transponder signals are picked up by multiple antennas and the time delays are used to figure out the position of the aircraft. It then sends the guidance signals a plane would normally expect to receive from an ILS transmitter array, for horizontal and vertical guidance. These signals appear to the plane to be coming from antennas located as per a typical ILS array, with the TLS able to generate signals from ‘virtual emanation points” as needed. This allows the TLS to generate different landing approaches to suit different planes and conditions. From the pilot and aircraft side, it’s all perfectly transparent.

In Antarctica’s McMurdo station, landings are handled by a TLS system that barely takes up more space than a single shipping crate. The system can be set up in just a few hours, unlike a traditional ILS which takes significant installation work spanning weeks or months at best. At the moment, though, the landing strip at McMurdo is stable enough that the system only needs periodic realignment every three years or so.

You might assume that if you’re approaching Antarctica by plane, everything would be on manual. However, the creature comforts of modern airports are available even at one of the the most southerly airports on Earth!

 

Farewell Magnetic Stripe

For decades, the magnetic stripe has been ubiquitous on everything from credit cards to tickets to ID badges. But the BBC reports — unsurprisingly — that the mag stripe’s days are numbered. Between smartphones, QR codes, and RFID, there’s just less demand for the venerable technology.

IBM invented the stripe back in the early 1960s. The engineer responsible, [Forrest Parry], was also involved in developing the UPC code. While working on a secure ID for the CIA, his wife suggested using an iron to melt a strip of magnetic tape onto the card. The rest is history.

Continue reading “Farewell Magnetic Stripe”

Categorizing Steel

In the movie Conan the Barbarian, we hear a great deal about “the riddle of steel.” We are never told exactly what that riddle is, but in modern times, it might be: What’s the difference between 4150 and 1020 steel? If you’ve been around a machine shop, you’ve probably heard the AISI/SAE numbers, but if you didn’t know what they mean, [Jason Lonon] can help. The video below covers what the grade numbers mean in detail.

The four digits are actually two separate two-digit numbers. Sometimes, there will be five digits, in which case it is a two-digit number followed by a three-digit number. The first two digits tell you the actual type of steel. For example, 10 is ordinary steel, while 41 is chromium molybdenum steel. The last two or three digits indicate how much carbon is in the steel. If that number is, say, 40, then the steel contains approximately 0.40% carbon.

Continue reading “Categorizing Steel”