LEGO Pole Climbers Are Great Study In What It Takes To Go Vertically Upwards

Climbing a pole with a robot might sound complicated and hard, but it doesn’t have to be. This video from [Brick Experiment Channel] demonstrates multiple methods of doing the job while keeping things simple from a mechanical perspective. (Video, embedded below.)

The first method uses a gravity locking design, where the weight of the battery pack is placed on a lever arm to increase the normal force on the wheels gripping the pole. Increasing the length of the lever arm, reducing the angle of the crawler, or adding grippier tyres can all be used to increase the grip with this design. The final design of this type is able to climb most of the way up an 8 meter flagpole without too much trouble.

The next version uses rubber bands to help add tension to grip the pole. This too works well and makes it to the top of the flagpole. The final build is a circulating design that looks truly wild in action, and winds its way to the top of the flagpole as well.

It’s great to see the experimental method of designing these Lego creations, as well as seeing how they do in the wild. [Brick Experiment Channel] has been featured here before, too.

Continue reading “LEGO Pole Climbers Are Great Study In What It Takes To Go Vertically Upwards”

A Simple LEGO Automatic Transmission

The automatic transmission in your average automobile can be a complicated, hydraulic-y thing full of spooky fluids and many spinning parts. However, simpler designs for “automatic” gearboxes exist, like this Lego design from [FUNTastyX].

The build is based around a simple open differential but configured in a unique way. A motor drives what would typically be one of the output shafts as an input. The same motor is also geared what would normally be the main differential input shaft as well. In these conditions, this double-drive arrangement would sum the speed input and lead to a faster rotational speed at the other shaft, which becomes the output.

However, the trick in this build is that the drive going to what would be the usual differential input is done through a Lego slipper clutch. This part, as explained by [TechnicBricks], allows the outer teeth of the gear to slip relative to the shaft once torque demand is exceeded. What this functionally does is that when the output of the “automatic gearbox” is loaded down, the extra torque demand causes the clutch to slip. This then leads to only one input to the differential doing any work, changing the gear ratio automatically.

It’s likely not a particularly efficient gearbox, as there are significant losses through the very simple clutch, we suspect. However, it does technically work, and we’d love to see its performance rated directly against other simple Lego gearbox designs.

It’s a little confusing to explain in text, but the video from [FUNTastyX] does a great job at explaining the principle in just a few minutes. We’ve seen plenty of crazy Lego gearboxes over the years, and we doubt this will be the last. Video after the break.

Continue reading “A Simple LEGO Automatic Transmission”

Detecting Ripeness In Fruit And Vegetables Via Neural Networks

Humans have an innate knack for identifying food that is fit to eat. There’s a reason you instinctively enjoy fresh fruit and vegetables, but find maggot-infested rotting flesh offputting, for example. However, we like to automate as much of the food production process as possible so we can do other things, so it’s necessary to have machines sort the ripe and ready produce from the rest at times. [kutluhan_aktar] has found a way to do just that, using the power of neural networks.

The project’s goal is a straightforward one, aiming to detect ripeness in fruit and vegetables by monitoring pigment changes. Rather than use a camera, the project relies on data from an AS7341 visible light sensor, which is better suited to capturing accurate spectral data. This allows a better read of the actual light reflected by the fruit, as determined by the pigments in the skin which are directly related to ripeness.

Sample readings were taken from a series of fruit and vegetables over a period of several days, which allowed a database to be built up of the produce at various stages of ripeness. This was then used to create a TensorFlow model which can determine the ripeness of fruit held under the sensor with a reasonable degree of certainty.

The build is a great example of the use of advanced sensing in combination with neural networks. We suspect the results are far more accurate than could have reasonably be determined with a cheap webcam, though we’d love to see an in-depth comparison as such.

Believe it or not, it’s not the only fruit spectrometer we’ve featured in these hallowed pages. Video after the break.

Continue reading “Detecting Ripeness In Fruit And Vegetables Via Neural Networks”

Magnetic Bearings Put The Spin On This Flywheel Battery

[Tom Stanton] is right about one thing: flywheels make excellent playthings. Whether watching a spinning top that never seems to slow down, or feeling the weird forces a gyroscope exerts, spinning things are oddly satisfying. And putting a flywheel to work as a battery makes it even cooler.

Of course, using a flywheel to store energy isn’t even close to being a new concept. But the principles [Tom] demonstrates in the video below, including the advantages of magnetically levitated bearings, are pretty cool to see all in one place. The flywheel itself is just a heavy aluminum disc on a shaft, with a pair of bearings on each side made of stacks of neodymium magnets. An additional low-friction thrust bearing at the end of the shaft keeps the systems suitably constrained, and allows the flywheel to spin for twelve minutes or more.

[Tom]’s next step was to harness some of the flywheel’s angular momentum to make electricity. He built a pair of rotors carrying more magnets, with a stator of custom-wound coils sandwiched between. A full-wave bridge rectifier and a capacitor complete the circuit and allow the flywheel to power a bunch of LEDs or even a small motor. The whole thing is nicely built and looks like a fun desk toy.

This is far from [Tom]’s first flywheel rodeo; his last foray into storing mechanical energy wasn’t terribly successful, but he has succeeded in making flywheels fly, one way or another.

Continue reading “Magnetic Bearings Put The Spin On This Flywheel Battery”

Miller (Effect) Time

While the Miller effect might sound like fun, it is actually the effect of parasitic capacitance in amplifiers. What do you do about it? Watch the video below the break from [All Electronics] and find out. We like how the test circuit it uses has a switch to put the mitigation circuitry in and out of the test for comparison purposes.

Actually, the Miller effect can refer to any impedance but in practice that is most often parasitic capacitance because of the construction used for tubes and transistors. The sometimes tiny capacitance gets multiplied by the inverting gain of the stage and increases the amplifier’s input impedance. This, in turn, reduces the bandwidth of the stage.

Continue reading “Miller (Effect) Time”

It’s Super Easy To Build Yourself A USB-C Variable Power Supply These Days

Once upon a time, building yourself a power supply required sourcing all manner of components, from transformers to transistors, knobs, and indicators. These days, everything’s a bit more integrated which helps if you’re trying to whip something up in a hurry. This build from [Ricardo] shows just how straightforward building a power supply can be.

The build is a simple mashup, starting with a ZY12PDN USB Power Delivery board. This board talks to a USB-C supply that is compatible with the Power Delivery standard, and tells it to deliver a certain voltage and current output. This is then used to supply power to a pre-built power supply module that handles current limiting, variable voltage output, and all that fancy stuff. It even comes with a screen built-in! Simply slap the two together in a 3D printed case with a couple of banana plugs, and you’re almost done.

All you need then is a USB-C power supply – [Ricardo] uses a portable power bank which allows him to use the power supply on the go. It’s a great alternative to a traditional heavy bench supply, and more than enough for a lot of hobby uses.

We’ve seen a lot of interest in USB Power Delivery recently, and its likely hackers will continue to enjoy the standard for some time to come. If you’ve got your own USB PD hack, be sure to let us know!

Overdriving Vacuum Tubes And Releasing The Magic Light Within

We’ve all seen electronic components that have been coaxed into releasing their small amount of Magic Smoke, which of course is what makes the thing work in the first place. But back in the old times, parts were made of glass and metal and were much tougher — you could do almost anything to them and they wouldn’t release the Magic Smoke. It was very boring.

Unless you knew the secret of “red plating”, of course, which [David Lovett] explores in the video below. We’ve been following [David]’s work with vacuum tubes, the aforementioned essentially smokeless components that he’s putting to use to build a simple one-bit microprocessor. His circuits tend to drive tubes rather gently, but in a fun twist, he let his destructive side out for a bit and really pushed a few tubes to see what happens. And what happens is pretty dramatic — when enough electrons stream from the cathode to the anode, their collective kinetic energy heats the plate up to a cherry-red, hence the term “red plating”.

[David] selected a number of victims for his torture chamber, not all of which cooperated despite the roughly 195 volts applied to the plate. Some of the tubes, though, cooperated in spades, quickly taking on a very unhealthy glow. One tube, a 6BZ7 dual triode, really put on a show, with something getting so hot inside the tube as to warp and short together, leading to some impressive pyrotechnics. Think of it as releasing the Magic Light instead of the Magic Smoke.

Having seen how X-ray tubes work, we can’t help but wonder if [David] was getting a little bit more than he bargained for when he made this snuff film. Probably not — the energies involved with medical X-ray tubes are much higher than this — but still, it might be interesting to see what kinds of unintended emissions red-plating generates.

Continue reading “Overdriving Vacuum Tubes And Releasing The Magic Light Within”