Insteon Abruptly Shuts Down, Users Left Smart-Home-Less

In today’s “predictable things that happened before and definitely will happen again”, Insteon, a smart home company boasting the Insteon ecosystem of devices built around their proprietary communication standards, has shut down their servers without a warning. For almost two decades, Insteon used to offer products like smart light switches, dimmers, relays, various sensors, thermostats – the usual home automation offerings, all linked into a cozy system. Looking through the Insteon subreddit’s history, there were signs of the company’s decline for good half a year now, but things were mostly stable – until about a week ago, when users woke up and noticed that parts of their smart home network stopped working, the mobile app would no longer respond, and the company’s resources and infrastructure went down. What’s more – the C-rank management has scrubbed their LinkedIn profiles from mentioning Insteon and SmartLabs (Insteon’s parent company).

Screenshot of Insteon's 'service status' page, saying "All Services Online: There's currently no known issues affecting Insteon services"Instantly, the Insteon subreddit has livened up. People, rightfully angry about being literally left in the dark, were looking for answers – as if mocking them, Insteon’s homepage claimed that all services were operational. Others, having expected the shutdown to eventually happen, started collecting and rehosting rapidly disappearing documentation, helping each other keep their tech up in the meantime, and looking into alternative platforms. It turned out to be imperative that users don’t factory reset their Insteon hubs, since those have to communicate with the currently Inste-Gone servers as part of initial configuration, diligently verifying the SSL certificates. Sadly, quite a few users, unaware and going through the usual solutions to make their network function again, are now left with hubs that are essentially bricked, save for a few lucky ones.
Continue reading “Insteon Abruptly Shuts Down, Users Left Smart-Home-Less”

All Dressed Up And Nowhere To Flow: Russia’s Nord Stream 2 Pipeline

At over 1230 km (764 mi) in length, $10 billion in cost, and over a decade in the making, the Nord Stream 2 pipeline was slated to connect the gas fields of Russia to Western Europe through Germany. But with the sanctions against Russia and the politics of the pipeline suffering a major meltdown, this incredible feat of engineering currently sits unused. What does it take to lay so much underwater pipe, and what challenges are faced? [Grady] over at Practical Engineering lays out out nicely for us in the video below the break.

A Bubble Curtain containing the disposal of WW2 ordinance

As with any undersea pipeline or cable, a survey had to be done. Instead of just avoiding great chasms, underwater volcanos, or herds of sharks with lasers, planners had to contend with culturally important shipwrecks, territorial waters, and unexploded ordnance dating from the second world war. Disposing of this ordinance in a responsible way meant employing curtains of bubbles around the explosion to limit the propagation of the explosion through the water- definitely a neat hack!

Speeding up the job meant laying several sections of pipe at once, and then tying them together after they were laid. The sheer amount of engineering, manpower and money involved are nothing short of staggering. Of course [Grady] makes it sound simple, and even shares his take on some of the geopolitical issues involved, such as Germany refusing to certify the line for use after the Russian invasion of Ukraine. So far, the $10 billion pipeline is unused, and even Shell has walked away from its $5 billion investment.

Be sure to watch the whole video for even more fascinating details about the Nord Stream 2’s amazing engineering and construction. Check out a Robot Eel concept for the maintenance of underwater pipelines too.

Continue reading “All Dressed Up And Nowhere To Flow: Russia’s Nord Stream 2 Pipeline”

Can You Identify This Mystery Unicode Glyph?

For anyone old enough to have worked with the hell of multiple incompatible character sets, Unicode has been a liberation; a true One Character Set To Contain Them All. We have so many Unicode characters to play with that there’s a fascinating pursuit in itself in probing at the obscure corners of what can be rendered on screen as a Unicode glyph. With so many disparate character sets having been brought together to make the Unicode standard there are plenty of unusual characters to choose from, and it’s one of them that [Jonathan Chan] has examined in detail.

U+237C ⍼, or the right angle with downwards zigzag arrow, is a mysterious Unicode symbol with no known use and from an unknown origin. XKCD featured it as a spoof “Larry Potter”, but as [Jonathan]’s analysis shows it’s proving impossible to narrow down where it came from. Mystical cult symbol? Or perhaps fiscal growth in an economy in which time runs downwards? Either way, when its lineage has been traced into the early 1990s with no answer to the question it appears that there may be a story behind it.

Hackaday readers never cease to amaze us with the breadth of their knowledge, ingenuity, and experience, so we think it’s not impossible that among you there may be people who will turn and pull a dusty computer manual from the shelf to give us the story behind this elusive glyph. We’d love to hear in the comments below.

Meanwhile if Unicode sparks your interest, we’ve given it a close look in the past.

Thanks [Jonty] for the tip.

High Temp Heat Engine Achieves 40% Efficiency

People generate lots of waste heat. It makes sense that there is a desire to convert that heat into usable energy. The problem is one of efficiency. Researchers from MIT and the National Renewable Energy Lab have announced a new heat converter that they claim has 40% efficiency. Of course, there’s a catch. The temperature range for the devices starts at 1,900 °C .

The thermophotovoltaic cells are tandem devices with two cells mated on one substrate. Each cell is multiple layers of very thin and somewhat exotic materials. So this probably isn’t something you will cobble up in your basement anytime soon unless you’re already manufacturing ICs down there. It appears that the secret is in the multiple layers including a reflective one that sends any missed photons back through the stack.

The paper is pretty dense, but there’s a Sunday-supplement summary over on the MIT site. Using heat storage leads to the ability to make heat batteries, more or less, and harness what would otherwise be waste energy.

We’ve noticed a lot of interest in drawing power from hot pipes lately. All of them techniques we’ve seen rely on some kind of exotic materials.

6 panel diagram of process

Add Conductive Traces On Vacuum Formed Plastic With 3D Printing

Surface conductors on vacuum formed parts appear in many hacks, from cosplay armor to 3D touch pads and smart objects. But making them has always been painful. Either they had to be hand painted after forming, which looked sloppy and was labor intensive, or they had to be printed with some difficult to use stretchable ink tech. [Freddie Hong] and his group have another solution, using tech most hackers already have – a 3D printer and a vacuum former.

plastic tray with electrodes to sense foil wrapped chocolates
Smart tray created by this method.

They 3D print the traces with conductive PLA filament directly onto a base plastic sheet, and then vacuum form the whole thing. The filament is happy to deform when heated – it’s printer filament.

We like this process.  We’ve found conductive filament isn’t reliably resistive across vertical layers, but is reliable in the XY plane. Their method only requires one layer. Also, they suggest 3D printing a layer of non conductive PLA atop most of the conductor, like a PCB solder mask.

Conductive filament has a fair bulk resistance. They suggest electroplating it before applying the top mask layer. They also are exploring 3D printing logos, stripes, and such with colored filament, or even making surface detail like rivets on model parts or adding thickness where the plastic thins during vacuum forming.

Designing the 3D print requires guessing what bit of plastic sheet ends up where in the vacuum formed final part.  His group used a commercial program, t-sim,  to do the prediction and Grasshopper to import the result into Rhino3D. This seems a lot for a home hacker. Drawing lines on a test sheet and vacuum forming seems simpler.

We’ve looked at vacuum forming before. We did a piece on 3D printing bucks , and covered [Ted Brull]’s Kevo vacuum former back in 2015.

Thanks to [howielowe] for the tip.

This Week In Security: Java’s Psychic Signatures, AWS Escape, And A Nasty Windows Bug

Java versions 15, 16, 17, and 18 (and maybe some older versions) have a big problem, ECDSA signature verification is totally broken. The story is a prime example of the dangers of unintended consequences, the pitfall of rolling your own crypto, and why to build a test suite for important code. In Java 15, the ECDSA verification code was re-written, moving the code from C++ to a Java-native implementation. The new code misses an important check, that the initialization and proof values are both non-zero.

Continue reading “This Week In Security: Java’s Psychic Signatures, AWS Escape, And A Nasty Windows Bug”

Electric Chopsticks Bring The Salt, Not The Pain

The Japanese people love their salt, perhaps as much as Americans love their sugar high fructose corn syrup and caffeine. But none of these are particularly good for you. Although humans do need some salt in their diets to continue existing, the average Japanese person may be eating too much of it on a regular basis — twice the amount recommended by the World Health Organization, according to Reuters. Cue the invention of electric chopsticks, which provide salty flavor without the actual sodium.

No, you won’t get shocked — not even a fresh 9 V to the tongue’s worth. The tips of the chopsticks are made of something food-safe and conductive, and one is wired to a bracelet that contains a small computer. Using a weak current, the chopsticks transmit sodium ions from the food to the tongue, which increases the perceived saltiness by 1.5x. The device was co-created by a Meiji University professor and a Japanese beverage maker, who hope to commercialize it sometime next year.

This isn’t the first time humans have used trickery when it comes to diets. The older among you may remember the miracle berry weight loss craze of the 1970s. When ingested first, miracle berries make sour things taste sweet, so chowing down on grapefruits and lemons suddenly sounds like a good idea. What people failed to realize was that the acidity would still wreak havoc on their teeth and tongues, leaving them regretful the next day.

Images via Reuters