The Galaxy Fold, Or Why Flexible OLED May Not Yet Be Ready For Prime Time

Samsung’s fancy new high-end smartphone with a flexible, foldable OLED display has been failing in worrying numbers for the first reviewers who got their hands on one. Now iFixit has looked into the issue using their considerable amount of smartphone tear-down experience to give their two cents. They base many of their opinions on the photos and findings by the Verge review, who were one of the (un)lucky ones to have their unit die on them.

The Galaxy Fold was supposed to be this regular smartphone sized phone which one can open up fully to reveal a tablet-sized display inside. The use of a flexible OLED display was supposed to create a seamless display without the annoying center line that having two individual displays would produce. Unfortunately it’s this folding feature which produces issues.

As iFixit notes, OLEDs are rather fragile, with their own tear-downs of regular OLED-equipped devices already often resulting in the damaging of the display edges, which spells doom for the internals of them as oxygen and other contaminants can freely enter. This means that maintaining this barrier is essential to keep the display functioning.

This is probably the reason why Samsung chose to install a screen protector on the display, which unfortunately was mistaken for a protective foil as found on many devices. The subsequent removal of this protector by some reviewers and the mechanical stress this caused destroyed some screens. Others had debris trapped in the fold between both halves of the display, which caused visible bumps in the display when opened.

The relatively massive spacing between the hinge and the display seems almost purposefully engineered to allow for the ingress of debris. This combines with the lack of any guiding crease in the center of the display and the semi-random way in which humans open and close the Fold compared to the perfectly repeating motion of the folding robots Samsung used to test the display. It seems that Samsung and others still have some work to do before they can call folding OLED displays ready for production.

Finally, have a look at this video of Lewis from UnboxTherapy pulling a folding robot with opening and closing a Fold one-thousand times:

 

Prusa Launches Their Own 3D Model Repository

If you own a 3D printer, you’ve heard of Thingiverse. The MakerBot-operated site has been the de facto model repository for 3D printable models since the dawn of desktop 3D printing, but over the years it’s fallen into a state of disrepair. Dated and plagued with performance issues, many in the community have been wondering how long MakerBot is still going to pay to keep the lights on. Alternatives have popped up occasionally, but so far none of them have been able to amass a large enough userbase to offer any sort of real competition.

Sorting models by print time and material required.

But that might soon change. [Josef Průša] has announced a revamped community for owners of his 3D printers which includes a brand-new model repository. While clearly geared towards owners of Prusa FDM printers (support for the new SLA printer is coming at a later date), the repository is not exclusive to them. The immense popularity of Prusa’s products, plus the fact that the repository launched with a selection of models created by well known designers, might be enough to finally give Thingiverse a run for its money. Even if it just convinces MakerBot to make some improvements to their own service, it would be a win for the community.

The pessimists out there will say a Prusa-run model database is ultimately not far off from one where MakerBot is pulling the strings; and indeed, a model repository that wasn’t tied to a particular 3D printer manufacturer would be ideal. But given the passion for open development demonstrated by [Josef] and his eponymous company, we’re willing to bet that the site is never going to keep owners of other printers from joining in on the fun.

That being said, knowing that the users of your repository have the same printer (or a variant, at least) as those providing the designs does have its benefits. It allows for some neat tricks like being able to sort designs by their estimated print time, and even offers the ability to upload and download pre-sliced GCode files in place of traditional STLs. In fact, [Josef] boasts that this is the world’s only repository for ready-to-print GCode that you can just drop onto an SD card and print.

Regular Hackaday readers will know that we’ve been rather critical of the decisions made by MakerBot over the last few years, but to be fair we aren’t exactly alone in that respect. The community desperately needs a repository for printable models that’s in somebody else’s hands, and frankly we’re thrilled with the idea it could be [Josef Průša] leading the charge. His printers might not be perfect, and they certainly aren’t cheap, but they definitely don’t fail to impress. Here’s hoping this latest venture will be the same.

Continue reading “Prusa Launches Their Own 3D Model Repository”

Stealing DNA By Phone

Data exfiltration via side channel attacks can be a fascinating topic. It is easy to forget that there are so many different ways that electronic devices affect the physical world other than their intended purpose. And creative security researchers like to play around with these side-effects for ‘fun and profit’.

Engineers at the University of California have devised a way to analyse exactly what a DNA synthesizer is doing by recording the sound that the machine makes with a relatively low-budget microphone, such as the one on a smart phone. The recorded sound is then processed using algorithms trained to discern the different noises that a particular machine makes and translates the audio into the combination of DNA building blocks the synthesizer is generating.

Although they focused on a particular brand of DNA Synthesizers, in which the acoustics allowed them to spy on the building process, others might be vulnerable also.

In the case of the DNA synthesizer, acoustics revealed everything. Noises made by the machine differed depending on which DNA building block—the nucleotides Adenine (A), Guanine (G), Cytosine (C), or Thymine (T)—it was synthesizing. That made it easy for algorithms trained on that machine’s sound signatures to identify which nucleotides were being printed and in what order.

Acoustic snooping is not something new, several interesting techniques have been shown in the past that raise, arguably, more serious security concerns. Back in 2004, a neural network was used to analyse the sound produced by computer keyboards and keypads used on telephones and automated teller machines (ATMs) to recognize the keys being pressed.

You don’t have to rush and sound proof your DIY DNA Synthesizer room just yet as there are probably more practical ways to steal the genome of your alien-cat hybrid, but for multi-million dollar biotech companies with a equally well funded adversaries and a healthy paranoia about industrial espionage, this is an ear-opener.

We written about other data exfiltration methods and side channels and this one, realistic scenario or not, it’s another cool audio snooping proof of concept.

3D Printing A Real Heart

As 3D printing becomes more and more used in a wide range of fields, medical science is not left behind. From the more standard uses such as printing medical equipment and prosthetics to more advanced uses like printing cartilages and bones, the success of 3D printing technologies in the medical field is rapidly growing.

One of the last breakthrough is the world’s first 3D vascularised engineered heart using the patient’s own cells and biological materials. Until now, scientists have only been successful in printing only simple tissues without blood vessels. Researchers from Tel Aviv University used the fatty tissue from patients to separate the cellular and acellular materials and reprogrammed the cells become pluripotent stem cells. The extracellular matrix (ECM) was processed into a personalized hydrogel that served as the basis from the print.

This heart is made from human cells and patient-specific biological materials. In our process these materials serve as the bioinks, substances made of sugars and proteins that can be used for 3D printing of complex tissue models… At this stage, our 3D heart is small, the size of a rabbit’s heart, but larger human hearts require the same technology.

After being mixed with the hydrogel, the cells were efficiently differentiated to cardiac or endothelial cells to create patient-specific, immune-compatible cardiac patches with blood vessels and, subsequently, an entire heart that completely matches the immunological, cellular, biochemical and anatomical properties of the patient. The difficulty of printing full-blown organs were being tackled for a long time and we already talked about it in the past.

The development of this technology may completely solve both the problem of organ compatibility and organ rejection.

 

RIP Rex Garrod, Creator Extraordinaire

Earlier this month, the youth motocross champion, special effects creator, inventor, TV presenter, and Robot Wars competitor, [Rex Garrod] died at the age of 75 after a long battle with dementia. We do not often carry obituaries here at Hackaday, and it’s possible that if you are not a Brit you may not have heard of [Rex], but his work in the time before YouTube would have made him an international must-watch star had he been operating in the age of on-demand Internet video.

I first became aware of Rex when he appeared as assistant to [Tim Hunkin] on his Secret Life of Machines TV series in the late 1980s. He was the man whose job we all wanted, making the most incredible machines and operating them for our entertainment. Our Hardware heroes tribute to [Tim] has a picture of him operating the needle on a giant mock-up of a sewing machine, but he appeared in many more episodes. Of the many tributes to [Rex] that have appeared over the last few days it is [Tim]’s one that probably says the most about his appeal to our community. His propensity for picking up interesting parts from junkyards strikes a chord, and the tale of hugely overpowering car wiper motors by allowing them to be submerged in water is pure genius.

To a slightly younger generation he is best known for his appearances in the British Robot Wars series‘ with his Cassius series of fighting robots. He created one of the first really potent flipper robots in UK robotic combat, and incidentally the first effective self-righting mechanism. As one of the many members of the SMIDSY team that didn’t appear on the recorded TV series’ I encountered him only peripherally, but I remember his work being a major influence on SMIDSY’s run-any-way-up design. Meanwhile for a younger generation still he created the models for the popular children’s TV character Brum, an anthropomorphised scale-model Austin 7 car.

We’ll leave you with a couple of videos featuring [Rex]. The first is from The Secret Life of Machines, in which along with [Tim] he helps explain electronics from first principles, while the second is a fan-created medley of his Robot Wars appearances. Rest in peace [Rex], and thank you.

Continue reading “RIP Rex Garrod, Creator Extraordinaire”

Dollar Store Garden Lights As ATtiny Power Supplies

Solar garden lights are just another part of the great trash pile of our age, electronics so cheap as to be disposable. Most of you probably have a set lurking somewhere at home, their batteries maybe exhausted. Internally though they are surprisingly interesting devices. A solar cell, a little boost converter chip, and a little NiCd battery alongside the LED. These are components with potential, as [Randy Elwin] noted with a mind to his ATtiny85 projects.

The YX805A chip he references in his write-up is one of several similar chips that function in effect as joule thieves, extending the available charge in the battery to keep the LED active as long as possible when their solar panel is generating nothing, and turning it off in daylight when the panel can charge. Their problem is that they are designed as joule thieves rather than regulators, so using them as a microcontroller PSU without modification can result in overvoltage.

His solution is to use the device’s solar panel input as a feedback pin from his ATtiny, allowing the microcontroller to keep an eye on its supply voltage and enable or disable the converter as necessary while it keeps running from the reservoir capacitor. Meanwhile the solar panel now charges the NiCd cell through a single diode. It’s not perfect and maybe needs a clamp or something, he notes that there is a condition in which the supply can peak at 8 volts, a level which would kill an ATtiny. But still, we like simple hacks on dollar store parts, so it’s definitely worth further investigation.

This isn’t the first garden light hack we’ve shown you, there was this flashlight, and some LED hacks.

Solar light picture: Leon Brooks [Public domain].

Forget Artificial Intelligence; Think Artificial Life

If you are a science fiction fan, you are probably aware of one of the genre’s oddest dichotomies. A lot of science fiction is concerned about if a robot, alien, or whatever is a person. However — sometimes in the same story — finding life is as easy as asking the science officer with a fancy tricorder. If you go to Mars and meet Marvin, it is pretty clear he’s alive, but faced with a bunch of organic molecules, the task is a bit harder. Now it is going to get harder still because Cornell scientists have created a material that has an artificial metabolism and checks quite a few boxes of what we associate with life. You can read the entire paper if you want more detail.

Three of the things people look for to classify something as alive is that it has a metabolism, self-arranges, and reproduces. There are other characteristics, depending on who you ask, but those three are pretty crucial.

Continue reading “Forget Artificial Intelligence; Think Artificial Life”