The 2023 Hackaday Prize Is Ten, First Challenge Is Educational

If you were anywhere near Hackaday over the weekend, you certainly noticed that we launched the tenth annual Hackaday Prize! In celebration of the milestone, we picked from our favorite challenges of years past and came up with four of our favorite, and even one new one just to keep you on your toes. But the first challenge round is running right now, so get your hacking motors turning.

Re-engineering Education

The first challenge this year showcases educational projects, but broadly construed. Hackers tend to learn best by doing. In the Re-engineering Education challenge, we want you to help give others a chance to learn new skills. Whether you’re building a DIY radio kit, a breadboard-it-yourself computer, or even a demonstrator robot arm, if it helps pass on your hard-earned skills, we want you to enter it here.

It’s fresh on my mind because we were just playing with one this weekend, but [deshipu]’s Fluffbug robot project is a great inspiration for non-traditional education. What better way to discover the intricacies of four-legged walking machine gaits than to have one to play with on your desktop? It’s not going to take over the world, but if you can make it walk, you’ve learned something.

More obviously educational is [Joan Horvath]’s Hacker Calculus, an entry in last year’s Prize. The connections between a function’s height, and the area or volume that it integrates up to can be awfully abstract. Printing out 3D models of the resulting shapes can really help to bring the point home. Or maybe you could really drive home the speed of a comet in its orbit with a physical model? They’ve got you covered, but also ideas for generating your own plastic math toys.

When we think educational computer builds, the amazing reproduction of the WDC-1 “Working Digital Computer” by [Michael Gardi] springs instantly to mind, but perhaps it goes too far down the rabbit hole. Just another rung up on the complexity ladder gets you the Blinking Computer by [Tony Robinson]. Or if you want to figure out how an almost-commercial Z80 computer works from the ground up, consider the Baffa 2.

So what skills do you have that you want to teach other hackers? Can you embody that in a project?

All the Challenges

If you don’t have education in your sights, have a look at the rest of the 2023 Hackaday Prize Challenge rounds. We’re sure you’ll find something you like.

To enter, simply set up a project on Hackaday.io. When the challenge is running, you’ll be able to enter. Full rules over at the 2023 Hackaday Prize landing page.

Challenge Date The Details
Re-engineering Education March 25 – April 25 Educational projects of all stripes welcome. If the goal is to teach, enter it here.
Assistive Tech April 25 – May 30 The Assistive Tech challenge calls for projects that help people with disabilities to learn, work, move around, and simply live their lives to the fullest.
Green Hacks May 30 – July 4 Help reduce our impact on the planet. Do more with less, or help clean up the mess.
Gearing Up July 4 – August 8 Hackers build their own tools. What have you made that makes your making easier? Share it with us.
Wildcard August 8 – September 12 This is where anything goes. The wildcard challenge lets your projects speak for themselves.

Continue reading “The 2023 Hackaday Prize Is Ten, First Challenge Is Educational”

Hackaday Berlin Was Bonkers

In celebration of the tenth running of the Hackaday Prize, we had a fantastic weekend event in Berlin. This was a great opportunity for all of the European Hackaday community to get together for a few days of great talks, fun show-and-tells, and above all good old fashioned sitting together and brainstorming. Of course there was the badge, and the location – a gigantic hackerspace in Berlin called MotionLab – even had a monstrous laser-eye octopus suspended from a gantry overhead. Everyone who came brought something to share or to show. You couldn’t ask for more.

Unfortunately, we weren’t able to record the talks, so we’ll run down the highlights for you here. [Jenny List] is writing up a bunch of the badge hacks as we speak, so we’ll skip that for now. For the full experience, you just had to be there, but we’ll share with you what pictures we got. Enjoy!

Continue reading “Hackaday Berlin Was Bonkers”

Europe’s Proposed Right-To-Repair Law: A Game Changer, Or Business As Usual?

Recently, the European Commission (EC) adopted a new proposal intended to enable and promote the repair of a range of consumer goods, including household devices like vacuum cleaners and washing machines, as well as electronic devices such as smartphones and televisions. Depending on how the European Parliament and Council vote in the next steps, this proposal may shape many details of how devices we regularly interact with work, and how they can be repaired when they no longer do.

As we have seen recently with the Digital Fair Repair Act in New York, which was signed into law last year, the devil is as always in the details. In the case of the New York bill, the original intent of enabling low-level repairs on defective devices got hamstrung by added exceptions and loopholes that essentially meant that entire industries and types of repairs were excluded. Another example of ‘right to repair’ being essentially gamed involves Apple’s much-maligned ‘self repair’ program, that is both limited and expensive.

So what are the chances that the EU will succeed where the US has not?

Continue reading “Europe’s Proposed Right-To-Repair Law: A Game Changer, Or Business As Usual?”

Gordon Moore, 1929 — 2023

The news emerged yesterday that Gordon Moore, semiconductor pioneer, one of the founders of both Fairchild Semiconductor and Intel, and the originator of the famous Moore’s Law, has died. His continuing influence over all aspects of the technology which makes our hardware world cannot be overstated, and his legacy will remain with us for many decades to come.

A member of the so-called “Traitorous Eight” who left Shockley Semiconductor in 1957 to form Fairchild Semiconductor, he and his cohort laid the seeds for what became Silicon Valley and the numerous companies, technologies, and products which have flowed from that. His name is probably most familiar to us through “Moore’s Law,” the rate of semiconductor development he first postulated in 1965 and revisited a decade later, that establishes a doubling of integrated circuit component density every two years. It’s a law that has seemed near its end multiple times over the decades since, but successive advancements in semiconductor fabrication technology have arrived in time to maintain it. Whether it will continue to hold from the early 2020s onwards remains a hotly contested topic, but we’re guessing its days aren’t quite over yet.

Perhaps Silicon Valley doesn’t hold the place in might once have in the world of semiconductors, as Uber-for-cats app startups vie for attention and other semiconductor design hubs worldwide steal its thunder. But it’s difficult to find a piece of electronic technology, whether it was designed in Mountain View, Cambridge, Shenzhen, or wherever, that doesn’t have Gordon Moore and the rest of those Fairchild founders in its DNA somewhere. Our world is richer for their work, and that’s what we’ll remember Gordon Moore for.

You can read our thoughts on Moore’s famous law. If you ever wondered how Silicon Valley became the place for electronics, the story is probably much older than you think.

This Week In Security: USB Boom! Acropalypse, And A Bitcoin Heist

We’ve covered a lot of sketchy USB devices over the years. And surely you know by now, if you find a USB drive, don’t plug it in to your computer. There’s more that could go wrong than just a malicious executable. We’ve covered creative and destructive ideas here on Hackaday, from creative firmware to capacitors that fry a machine when plugged in. But what happened to a handful of Ecuadorian journalists was quite the surprise. These drives went out with a bang.

That is, they literally exploded. The drives each reportedly contained a pellet of RDX, a popular explosive in use by militaries since the second World War. There have been five of these hyperactive USB devices located so far, and only one actually detonated. It seems that one only managed to trigger half of its RDX payload. Because of this, and the small overall size of a USB drive, the explosion was more comparable to a firecracker than a bomb. Continue reading “This Week In Security: USB Boom! Acropalypse, And A Bitcoin Heist”

Combining Acoustic Bioprinting With Raman Spectroscopy For High-Throughput Identification Of Bacteria

Rapidly analyzing samples for the presence of bacteria and similar organic structures is generally quite a time-intensive process, with often the requirement of a cell culture being developed. Proposed by Fareeha Safir and colleagues in Nano Letters is a method to use an acoustic droplet printer combined with Raman spectroscopy. Advantages of this method are a high throughput, which could make analysis of samples at sewage installations, hospitals and laboratories significantly faster.

Raman spectroscopy works on the principle of Raman scattering, which is the inelastic scattering of photons by matter, causing a distinct pattern in the thus scattered light. By starting with a pure light source (that is, a laser), the relatively weak Raman scattering can be captured and the laser light filtered out. The thus captured signal can be analyzed and matched with known pathogens. Continue reading “Combining Acoustic Bioprinting With Raman Spectroscopy For High-Throughput Identification Of Bacteria”

Helmke-Part-Counter Dispensing Parts

Dispense 60 Bolts In 2.3 Seconds

We’ve covered a number of projects that assist makers who need to fill orders for their small businesses, or kitting. [Helmke] has sorted thousands of pieces of hardware that they include with 3D printed parts sold online. They have been developing an alternative, a modular system for sorting and packaging specific quantities of parts.

Animated GIF of Helmke-Part-Counter Sorting Parts

After the break, check out the latest video from their small but growing channel for a very clear walk-through of the counting system they’ve been iterating on. The 2nd video in the series explores solenoids, Geneva drives, and ultimately a sprocket to dispense a variable number of bolts from the sorting machine. The approach gives consistent results, easily to vary quantities, and is fast! These videos are also rich with lots of small details you might want to explore on your own like magnetic part feeding, discussions of different sensors for detecting and counting parts, 3D printed gear box designs, and we love the use of stackable crates for project enclosures.

We hope to see more videos from [Helmke] in the series as the project matures for deeper dives into the existing mechanisms and new features they develop next. Hungry for more? We’ve brought you everything from cutting and stripping wire, to SMD tape, to resistors, to laser-cut parts. Continue reading “Dispense 60 Bolts In 2.3 Seconds”