Raspberry Pi Want A Cracker?

If you watch the old original Star Trek, you’ll notice that the computers on board the Enterprise don’t look much like our computers (unless you count the little 3.5 inch floppies that looked pretty close to the real thing). Then again, the Enterprise didn’t need keyboards and screens since the computers did a pretty good job of listening and speaking to humans.

We aren’t quite to the point where you can just ask the computer some fuzzy open-ended question like Captain Kirk did, but we do have things like Echo, Siri, and Google Now that do a fair job of listening to you and replying. In fact, Google provides an API that can do speech recognition and generation. [Giulio] used some common Python libraries to add speech I/O to a Raspberry Pi.

Continue reading “Raspberry Pi Want A Cracker?”

Keep Tabs On The Weather With Rpi_status

[Facelessloser] is interested in glanceable information. Glancable devices are things like your car’s dashboard, your wristwatch, or widgets on a smartphone lockscreen. The glanceable information distribution system in this case is rpi_status, [facelessloser’s] entry in the Enlightened Raspberry Pi Contest.

[Facelessloser] coupled a ring of eight WS2812 RGB LEDs with a small OLED screen managed by a the common ssd1306 controller. Since he was rolling his own board for this project, [faceless] some buttons and a BMP180 temperature sensor. Going with popular parts like this meant libraries like the Pimoroni unicorn hat library for the WS2812 were readily available.

A simple display like this can show just about anything – from status of a nightly software build, to traffic along your morning commute. [Facelessloser] is using it for weather data. His data source is Weather Underground’s API. Weather information is displayed on the OLED. The WS2812’s display the temperature. A single blue light means cold. The ring fills as the temperature warms up. After eight degrees of blue, the color changes to orange, followed by red.

Check out the video after the break for a short demo of the board.

Continue reading “Keep Tabs On The Weather With Rpi_status”

From CRT TV To All-In-One Console

When the Raspberry Pi first appeared there was some excitement among Raspberry Jam attendees at the prospect of a computer with a video output on a board small enough to be concealed inside a TV. But while the idea is a good one the prospect of poking around among the high voltages of an older CRT model has meant that surprisingly few such ideas turned into reality.

One person who made the idea into a reality was [Jon], who took a [Dora] The Explorer branded CRT/DVD combo in a fetching shade of red and turned it into an all-in-one retro console gaming system with an embedded Raspberry Pi.

nintendo-crt-tv-thumbnailThis is however not merely a Pi stuffed inside the rear casing with a few holes for cables, instead he took away the substantial part of the DVD mechanism and mounted his Pi safely in a plastic box. Some USB extension cables bring all four USB sockets to the front panel through the DVD slot with a bit of Sugru to hold them in place. An HDMI panel-mount extension goes to the TV’s rear connector panel, as does a power switch for the Pi which is wired to a USB charger mounted on a trailing mains socket inside the case. The composite video from the Pi is wired to the TV’s AV in video socket.

We don’t blame [Jon] for not looking at the TV’s power rails to find power for his Pi, though a TV of this recent age would have safely mains-isolated rails that’s still a task fraught with hazards. The resulting unit is a high quality retro console, and as a final touch he’s given it a Nintendo logo and some storage for his gamepads on the rear.

We’ve had a few CRTs with integrated computers before here at Hackaday, but not all have been as they seemed. This Pi for instance sat in a vintage Singer TV, but the CRT was replaced with a modern LCD. Our favourite though it this Chromecast driving a 1978 GE model.

Raspberry Pi Boots CP/M

Retrocomputing is an enjoyable and educational pursuit and — of course — there are a variety of emulators that can let you use and program a slew of old computers. However, there’s something attractive about avoiding booting a modern operating system and then emulating an older system on top of it. Part of it is just aesthetics, and of course the real retrocomputing happens on retro hardware. However, as a practical matter, retrocomptuters break, and with emulation, you’d assume that CPU cycles spent on the host operating system (and other programs running in the background) will take away from the target retrocomputer.

If you want to try booting a “bare metal” Z80 emulator with CP/M on a Raspberry Pi, you can try EMUZ80 RPI. The files reside on an SD card and the Pi directly boots it, avoiding any Linux OS (like Raspian). It’s available for the Raspberry Pi Model B, A+, and the Raspberry Pi 2 Model B. Unlike the significant boot times of the standard Linux distros on the earliest models of Pi, you can boot into CP/M in just five seconds. Just like the old days.

The secret to this development is an open source system known as Ultibo, a framework based on Open Pascal which allows you to create bare metal applications for the Raspberry Pi. The choice of Free Pascal will delight some and annoy others, depending on your predilections. Ultibo is still very much in active development, but the most common functions are already there; you can write to the framebuffer, read USB keyboards, and write to a serial port. That’s all you really need to make your own emulator or write your own Doom clone. You can see a video about Ultibo (the first of a series) below.

Continue reading “Raspberry Pi Boots CP/M”

TensorFlow Robot Recognizes Objects

Children can do lots of things that robots and computers have trouble with. Climbing stairs, for example, is a tough thing for a robot. Recognizing objects is another area where humans are generally much better than robots. Kids can recognize blocks, shapes, colors, and extrapolate combinations and transformations.

Google’s open-source TensorFlow software can help. It is a machine learning system used in Google’s own speech recognition, search, and other products. It is also used in quite a few non-Google projects. [Lukas Biewald] recently built a robot around some stock pieces (including a Raspberry Pi) and enlisted TensorFlow to allow the robot to recognize objects. You can see a video of the device, below.

Continue reading “TensorFlow Robot Recognizes Objects”

Cheap 360 Degree Camera

How much would you pay for a 360 degree camera? How about $15 if you already have a Raspberry Pi and a Pi camera hanging around? If you don’t, you’ll have to add that minimal cost into the build. [Gigafide] noticed how a spherical mirror, made to see around corners, showed an all-around view if you took a picture of it from below. He snagged a panoramic lens made for an iPhone and stripped it for its optics. Some custom software and a little work resulted in a usable 360 degree camera.

SimpleCV (a light version of OpenCV) provides the algorithms to unwrap the frames and you can take video with the setup (see the video below). Mounting the optics took some 3D printing and the Pi operates as a hot spot to send the video out.

Continue reading “Cheap 360 Degree Camera”

Orka Controls The (Pi) World

If you deploy a lot of Raspberry Pi computers, you might find it inconvenient to log into each one to perform different tasks. Orka, an open source project by [Karthik K], is a server that runs on a desktop PC (Windows, Linux, or Mac) and can control multiple Orka clients (that can run on a Pi, or a desktop PC). We understand that [Karthik K] is looking for Mac testers, by the way.

From the server, you can execute commands and create tasks. You can also receive notification when a client PC reaches a threshold (for example, over temperature or too much CPU or RAM usage). You can open a shell on a client and do other operations.

Continue reading “Orka Controls The (Pi) World”