Polaroid Develops Its Pictures Remotely

For those who didn’t experience it, it’s difficult to overstate the cultural impact of the Polaroid camera. In an era where instant gratification is ubiquitous, it’s easy to forget that there was a time when capturing a photograph meant waiting for film to be developed or relying on the meticulous art of darkroom processing. Before the era of digital photography, there was nothing as close to instant as the Polaroid. [Max] is attempting to re-capture that feeling with a modified Polaroid which instantly develops its pictures in a remote picture frame.

The build is based on a real, albeit non-functional, Polaroid Land Camera. Instead of restoring it, a Raspberry Pi with a camera module is placed inside the camera body and set up to capture pictures. The camera needs to connect to a Wi-Fi network before it can send its pictures out, though, and it does this automatically when taking a picture of a QR code. When a picture is snapped, it sends it out over the Internet to wherever the picture frame is located, which has another Raspberry Pi inside connected to an e-ink screen. Once a picture is taken on the camera it immediately shows up in the picture frame.

To help preserve the spirit of the original Polaroid, at no point is an image saved permanently. Once it is sent to the frame, it is deleted from the camera, and the next picture taken overwrites the last. And, for those who are only familiar with grayscale e-ink displays as the integral parts of e-readers, there have been limited options for color displays for a while now, as we saw in this similar build which was painstakingly built into a normal-looking picture frame as part of an attempted family prank.

Continue reading “Polaroid Develops Its Pictures Remotely”

Blackberry Pi Puts Desktop Linux In Your Pocket

Let’s face it — Android wasn’t what most of us had in mind when we imagined having Linux running on our phones. While there’s a (relatively) familiar kernel hiding at the core of Google’s mobile operating system, the rest of the environment is alien enough that you can’t run Linux software on it without jumping through some hoops. While that’s fine for most folks, there remains a sizable group of users who still dream of a mobile device that can run a full Linux operating system without any compromises.

Judging by the work put into the Blackberry Pi, we’re willing to bet that [IMBalENce] falls into that camp. The custom handheld combines the Raspberry Pi Zero, a 320×240 LCD, and the BBQ20KBD keyboard from Solder Party with a 2500 mAh LiPo pouch cell and associated charging circuitry. Optionally, it also supports modules such as the Raspberry Pi Camera, a Real-Time-Clock, a ADS1015 ADC to read the battery voltage, and even a USB hub — although you can’t have all the goodies installed at once as it draws too much current.

Everything is packed into a 3D printed case that looks roughly like an original DMG-01 Game Boy if somebody replaced the bottom half with a tiny keyboard. We appreciate the ZX Spectrum theme, even if it’s not immediately clear how it relates to the project other than being an excuse to play around with multi-color printing. [IMBalENce] says the final product works quite well, though the relatively limited keys on the BlackBerry keyboard does make it tricky to use the device for writing code.

Interested in mobile Linux, but not trying to build the hardware yourself? We recently took a look at the SQFMI Beepy, which is fairly similar in terms of hardware, but very much in need of some talented penguin wranglers who are willing to come in and work on the software and documentation. Think you’re up for the challenge?

Running DOOM In A Keycap Takes Careful Work

Shoehorning DOOM into different hardware is a classic hacker’s exercise, and [TheKeebProject] managed to squeeze the 1993 classic into a custom keycap with the help of a Raspberry Pi RP2040, a custom PCB, and a clear resin enclosure. It even has a speaker for sound!

All processing is done inside the keycap, which is a clever feat. There is a USB connection, but it’s only for power and keyboard controls, so it’s completely playable without needing a whole lot of external support. The custom PCB and code are based off an earlier RP2040 DOOM project, and [TheKeebProject] has certainly made it their own by managing to get everything so tightly integrated. There’s a quick video mashup embedded below. There’s still a bit of work to do, but the code and design files are all on GitHub should you wish for a closer look.

Making DOOM physically smaller is a good challenge, but we’d like to remind fans that we’ve also seen DOOM shrink in terms of power consumption, all the way down to 1 mW.

Continue reading “Running DOOM In A Keycap Takes Careful Work”

Get MOST Into Your Pi

When looking the modify a passenger vehicle, the Controller Area Network (CAN) bus is a pretty easy target. In modern vehicles it has access to most of the on-board systems — everything from the climate control to the instrument cluster and often even the throttle, braking, and steering systems. With as versatile as the CAN bus is, though, it’s not the right tool for every job. There’s also the Media Oriented Systems Transport (MOST) bus which is increasingly found in automotive systems to handle multimedia such as streaming music to the stereo. To access that system you’ll need to approach it slightly differently as [Rhys] demonstrates.

[Rhys] has been working on replacing the dated head unit in his Jaguar, and began by investigating the CAN bus. He got almost everything working with replacement hardware except the stereo, which is where the MOST bus comes into play. It provides a much higher bandwidth than the CAN bus can accommodate but with almost no documentation it was difficult to interact with at first. With the help of a Raspberry Pi and a lot of testing he is able to get the stereo working again with a much more modern-looking touchscreen for control. It is also able to do things like change CDs in the car’s CD player, gather song information from the CD to display on the panel, and can perform other functions of the infotainment center.

For more detailed information on the MOST bus, [Rhys] also maintains a website where he puts his discoveries and other information he finds about this system. Unfortunately car stereo systems in modern vehicles can get pretty complicated these days, but adapting car stereos in older vehicles to modern technology carries some interesting challenges as well.

Continue reading “Get MOST Into Your Pi”

Solar Power Your Pi

Running a Raspberry Pi with solar power sounds easy. Of course, like most things, the details are what get you. About a year ago, [Bystroushaa] tried it without success. But the second time turned out to be the charm.

Of course, success is a relative term. It does work, but there is concern that it won’t be sufficient in the winter. In addition, if the battery dies, everything doesn’t restart automatically. Still, it is usable, and there should be ways to solve those problems.

The original attempt used a PiJuice hat and solar panel. This time, the design didn’t use these, opting instead for a LiFePO4 battery, a solar regulator, and a solar panel. The rest of it comes down to mechanical and physical mounting. The cheap regulator has some drawbacks. For example, it doesn’t allow for monitoring like more expensive units. It also cannot balance the cells periodically, although that could be done with an external controller.

We’ve seen solar-powered Pi boards before. Or, try a Game Boy.

Adapter Board Expands The Pi Zero

The standard Raspberry Pi computers have been in short supply for a while now, so much so that people are going to great lengths to find replacements. Whether it’s migrating to alternative single-board computers or finding clones of the Pi that are “close enough”, there are solutions out there. This method of building a full-size Raspberry Pi with all of the bells and whistles using the much-less-in-demand Pi Zero also stands out as a clever solution.

[SpookyGhost] didn’t build this one himself, but he did stumble across it and write a pretty extensive how-to and performance evaluation for the board, which can be found here. The adapter connects to the Zero’s HDMI and USB ports, and provides all the connectors you’d expect from a larger Pi such as the 3B. It’s not a perfect drop-in replacement though — you don’t get the 3.5 mm audio jack, and the micro SD card location doesn’t match up with where it should be on a “real” Pi.

All things considered, this is one of those solutions that seems obvious in retrospect but we still appreciate its elegance. It might disappear as soon as chip shortages stop being an issue, but for now we’ll take any solutions we can. If you don’t already have a Pi Zero on hand, we’ve seen some other successes replacing them with thin clients or even old smartphones.

Pi Zero Runs DOOM Via Wireless Power

What’s better than a Raspberry Pi Zero running DOOM on a 3.5″ touchscreen? Running it over wireless power, of course!

[atomic14] has been interested in wireless power for a while, and while most of the hardware he’s tested over the years has been less than impressive, he demonstrates one that’s able to reliably deliver 5 V at about 1 A which is more than enough to boot a Raspberry Pi W2 into X and launch DOOM. But while that’s neat, he explains that wireless power isn’t quite yet an effortless solution.

The hardware can deliver 5 V at about 1 A wirelessly, which is plenty, but coil alignment is critical to efficiency.

For one thing, the hardware he’s using — similar to those used for mobile phone charging — need the receiver to be very close to the transmitter. In addition, they need to be aligned well or efficiency drops off sharply. For mobile phones this isn’t much of a problem, but it’s difficult to position a Raspberry Pi and display just so when one can’t see the coils. Misalignment means brownouts and other unreliable operation.

So while the wireless power is capable of running the Pi directly, [atomic14] attempts to put a small battery and charger circuit into the mix in order to make the whole thing both portable and more reliable. But because nothing is easy, he discovers that his charging board — which should be able to output as low as 4.5 V — isn’t able to be adjusted down any lower than 5.66 V. It turns out that a resistor marked 104 (which should be 100 kΩ) is actually measuring 57 kΩ, and the trim pot doesn’t go lower than 10 kΩ. The solution is a bit of component swapping, but we suppose it’s a reminder that sometimes with cheap parts, one pays in other ways.

You can see [atomic14]’s wireless power Raspberry Pi running the classic shooter in the video below. Wireless power may have its issues, but it’s certainly a lot less messy than running DOOM with a gigantic potato battery.

Continue reading “Pi Zero Runs DOOM Via Wireless Power”