Building A Swarm Of Autonomous Ocean Boats

There’s a gritty feel to the Hackerboat project. It doesn’t have slick and polished marketing, people lined up with bags of money to get in on the ground floor, or a flashy name (which I’ll get to in a bit). What it does have is a dedicated team of hackers who are building prototypes to solve some really big challenges. Operating on the ocean is tough on equipment, especially so with electronics. Time and tenacity has carried this team and their project far.

Continue reading “Building A Swarm Of Autonomous Ocean Boats”

Beautiful Cardboard Robot Build

[Miloslav Stibor] may have built Mimobot 2.1 out of cardboard so that it’s not very heavy, but the robot is absolutely no lightweight. Read through his logs (in Czech, or in translation) and you’ll see what we mean.

Our favorite feature is the recharging dock and docking connectors, made respectively out of spring-loaded rivet ferrules and copper-tape-covered cardboard. The video found on that page is also absolutely brilliant: watch in awe as it climbs over children’s books, pulls a wooden train, or scales a mountain of pillows.

We wrote [Miloslav] and asked about the continuous-rotation servos, because they ran so smoothly at low speeds. He replaced the potentiometer with a pair of “carefully matched” 2.2 k resistors, and drives them with a PWM signal. Sounds easy, and obviously works very well. We were always under the impression that it was a little bit more complicated to get proportional control of hobby servos. We’ll have to experiment.

The wheels and lightweight frame (made of “military grade” cardboard — saturated with a wood/paper glue) make it entirely capable in living-room environments covered in cables or rugs, which is something we can’t say about our purchased vacuum-cleaner-bot. And the cell-phone remote interface that lets him control the onboard camera and its elevation and lighting. Driving the thing around with the phone control looks fun.

In short, if you build small robots, give this one a look. Something very much like this is now on our short must-build list. And we can’t wait to see Mimobot v3!

Robot Bites Man!

The old newspaper saying holds that a dog biting a man isn’t news, but “Man Bites Dog” is a stellar headline. So instead of focusing on the usual human-on-small-robot torture experiments as we usually do, we bring you “The First Law“, an art piece by [Alex Reben].

[Alex] built a robot that “intentionally” defies Asimov’s First Law: doing no harm to humans. A human puts its little pink finger in the slot, is sensed, and a robot arm with a needle comes down and smashes through the meatbag’s puny fleshy appendage. Or maybe it doesn’t — it’s got a randomization routine that can be said to be “choosing” to prick you or not.

Yeah, the pin-prick is trivial, and yeah, the robot is not really deciding, but the point of the ‘bot is to get people talking. In a world where killer robots are not (yet, explicitly) against the Geneva Convention, soon we’re going to be facing this problem for real. If we need robot-art that makes literary references to get us thinking about these issues, so be it.

Of course, you don’t need to wait until there’s moral consensus to build your own terribly dangerous “robots” at home. How about an automated flamethrower or a knife-wielding tentacle? Or maybe this once, we’ll say that it makes more sense to just sit back and read about other folks doing it.

Via [Fast Company]. Thanks [fishocks367] for the tip!

Hackaday Prize Entry: Micro Robots For Education

[Joshua Elsdon] and [Thomas Branch] needed a educational hardware platform that would fit into the constrained spaces and budgets of college classes. Because nothing out there that was cheap, simple and capable enough to fit their program, the two teachers for robotics at the Imperial College Robotics Society set out to build their own – and entered the Hackaday Prize with a legion of open source Micro Robots.

These small robots have a base area of 2 cmand a price tag of about £10 (about $14) each, once they are produced in quantities. They feature two onboard stepper motors, an RGB-LED, battery, a line-following sensor, collision-sensors and a bidirectional infrared transmitter for communicating with a master system, the ‘god bot’. The master system is based on a Raspberry Pi with little additional hardware. It multiplexes the IR-communication with all the little robots and simultaneously tracks their position and orientation through a camera, identifying them via their colored onboard LED. The master system also provides a programming interface for the robots, so that no firmware flashing procedure is required for students to get their code running. This is a well-designed, low-cost multi-robot system, and with onboard sensors, stepper motor odometry, and absolute positioning feedback, these little robots can be taught quite a few tricks.

Building tiny robots comes with a lot of regular-sized challenges, and we’re delighted to follow [Joshua Elsdon] and [Thomas Branch] on their journey from assembling the tiny PCBs over experimenting with 3D printing and casting techniques to produce the tiny wheels to the ROS programming. The diligent duo is present in the Hackaday prize twice: With their own Micro Robots project and with their contribution to the previously covered ODrive – an open source BLDC servo controller. We are already curious about their next feat! The below video shows a successful test of the camera feedback integration into the ROS.

The HackadayPrize2016 is Sponsored by:

Stop The Machine-on-Machine Violence!

We’re not sure we condone this at all. CRT monitors are virtually extinct, and here we have some folks just smashing them up for no good reason. That said, it’s kinda cool to see large industrial robots in motion, so we can’t really blame them. (Video embedded below.)

geeksmash_thumbnail

We’ve covered the [Geek Group] crushing TVs with their robot arm before although that first try was more like a fail, in the sense that the TV was only partly smashed. At the time, we joked that it was because they had a Jolly Wrencher holding the CRT together. But it could have been that the robot arm simply lacked the requisite grunt.

This time they came to it with a stronger robot arm, and removed the Jolly Wrencher from the screens. These folks aren’t scientists — changing two variables at once leaves the experiment inconclusive. But they do smash things. So that’s a success, right?

Continue reading “Stop The Machine-on-Machine Violence!”

Multipurpose Robot For The Masses

As the cost of almost every technology comes falling down, from electronics to batteries to even tools like 3D printers, the cost to build things formerly out of reach of most of us becomes suddenly very affordable. At least, that’s what [John Choi] has found by building a completely DIY general purpose robot for around $2000.

OK, so $2000 isn’t exactly “cheap” but considering that something comparable (like Baxter) costs north of what a new car would cost means that [John] has dropped the price for a general-purpose robot by an order of magnitude. And this robot doesn’t skimp on features, either. It has a platform that allows it to navigate rooms, two manipulating limbs with plenty of servos, a laptop “head” that allows for easy interface, testing, and programming, and an Arduino Mega that allows it to interface with any sensors or other hardware with ease. It’s also modular so it can be repaired and transported easily, and it uses open source software and open hardware so it’s easy to build on.

This robot is an impressive piece of work that should help bring this technology to more than just high-end factories and research labs. They’ve already demonstrated the robot watering plants, playing the piano, picking things up, and many other tasks. We’d say that they’re well on their way to their goal of increasing the number of students and hobbyists who have access to this technology. If the $2k price tag is still too steep, though, there are other ways of getting into robotics without diving headfirst into a Baxter-like robot.

Continue reading “Multipurpose Robot For The Masses”

Remote control beer crate traversing rough terrain

RC Beer Crate Handles Rough Terrain Like A Pro

[Niklas Roy] is at it again. Summer time means beer time and what better way for him to distribute beer at outdoor parties than a with an amazingly agile remote controlled beer crate capable of handling rough backyard terrain. With the controller firmly in hand he could even institute a leave-an-empty, take-a-beer policy to speed clean-ups.

We’ve seen awesome beer dispensing robots with all the bells and whistles in the past, from ones that are moving coolers, decapping the beer before handing it off, to BREWSTER the modified roomba who’ll fetch you a beer from a mini-fridge. [Niklas]’ RC beer crate sits at the simplicity end of the spectrum, reminding us of the no nonsense Star Wars mouse droid that wandered the Death Star’s corridors. The beer crate sits on a low wooden platform with a lip added to it to keep the crate from sliding off.  Under the platform are your basics: 2-channel RC receiver from a cheap toy car, H-bridges, two windscreen wiper motors and wheels, a LiPo battery, an on/off switch and two casters. For an arcade feel, the RC controller is a modified Competition Pro offering retro joystick steering.

As you can see from the video after the break (with a party-appropriate Metal soundtrack) it’s incredibly stable, moving rapidly over patio stones, from patios stones to dirt and lawn and even up messy inclines. This one’s sure to add excitement to many parties, while keeping party goers well served.

Continue reading “RC Beer Crate Handles Rough Terrain Like A Pro”