Your Next Airport Meal May Be Delivered By Robot

Robot delivery has long been touted as a game-changing technology of the future. However, it still hasn’t cracked the big time. Drones still aren’t airdropping packages into our gutters by accident, nor are our pizzas brought to us via self-driving cars.

That’s not to say that able minds aren’t working on the problem. In one case, a group of engineers are working ton a robot that will handle the crucial duty of delivering food to hungry flyers at the airport.

Continue reading “Your Next Airport Meal May Be Delivered By Robot”

2022 FPV Contest: The LOTP Robot Dog

When you think of first person view (FPV) vehicles, aircraft might be what first comes to mind. However, [Limenitis Reducta] has brought a robot dog into the world, and plans to equip it for some FPV adventures.

LOTP pictured with various equippable modules.

The robot dog itself goes by the name of LOTP, for unspecified reasons, and was designed from the ground up in Fusion 360. A Teensy 3.5 is charged with running the show, managing control inputs and outputting the requisite instructions to the motor controllers to manage the walk cycle. Movement are issued via a custom RC controller. Thanks to an onboard IMU, the robotic platform is able to walk effectively and maintain its balance even on a sloping or moving platform.

[Limenitis] has built the robot with a modular platform to support different duties. Equitable modules include a sensor for detecting dangerous gases, a drone launching platform, and a lidar module. There’s also a provision for a camera which sends live video to the remote controller. [Limenitis] has that implemented with what appears to be a regular drone FPV camera, a straightforward way to get the job done.

It’s a fun build that looks ready to scamper around on adventures outside. Doing so with an FPV camera certainly looks fun, and we’ve seen similar gear equipped on other robot dogs, too.

Continue reading “2022 FPV Contest: The LOTP Robot Dog”

Mini Cheetah Clone Teardown, By None Other Than Original Designer

[Ben Katz] designed the original MIT Mini Cheetah robot, which easily captured attention and imagination with its decidedly un-robotic movements and backflips. Not long after [Ben]’s masters thesis went online, clones of the actuators started to show up at overseas sellers, and a few months after that, clones of the whole robot. [Ben] recently had the opportunity to disassemble just such a clone by Dogotix and see what was inside.

Mini sheep, meet mini cheetah.

Amusingly, one of the first things he noticed is that the “feet” are still just off-the-shelf squash balls, same as his original mini cheetah design. As for the rest of the leg, inside is a belt that goes past some tensioners, connecting the knee joint to an actuator in the shoulder.

As one may expect, these parts are subject to a fair bit of stress, so they have to be sturdy. This design allows for slender yet strong legs without putting an actuator in the knee joint, and you may recall we’ve seen a similar robot gain the ability to stand with the addition of a rigid brace.

It’s interesting to read [Ben]’s thoughts as he disassembles and photographs the unit, and you’ll have to read his post to catch them all. But in the meantime, why not take a moment to see how a neighbor’s curious sheep react to the robot in the video embedded below? The robot botches a backflip due to a low battery, but the sheep seem suitably impressed anyway.

Continue reading “Mini Cheetah Clone Teardown, By None Other Than Original Designer”

Antweight Combat Robot Tips, Shared From Experience

[Harry]’s newest robot, the MotherLoader V2, looks fantastic but was ultimately more of a learning experience and test bed for some experimental features. Luckily for us, [Harry] created a lengthy write-up detailing everything that he tried and revised.

3D printing and aluminum both feature heavily in antweight robots, in part because when contestants are limited to 150 grams it’s safe to say that every bit counts. We recommend reading [Harry]’s entire article to get all the details, but here are some of the bigger takeaways.

Treads provide a lot of contact surface, but there are a lot of ways they can go wrong. Pliability and grip have to be good matches for the robot’s design, otherwise the tread might bunch up or otherwise perform poorly when trying to maneuver. [Harry] had several dud efforts, but ended up with a great result by borrowing an idea from another competitor: composite tracks.

These have an inner track printed from flexible TPU filament, and an outer layer formed by casting silicone directly onto the 3D printed core. It’s a somewhat involved process, but the result is a durable and custom-fitted inner track on the inside, and a softer grip outside. Best of both worlds, and easily tailored to match requirements.

Speaking of TPU, [Harry] discovered that it can be worth printing structural parts with TPU. While ABS is usually the material of choice for durable components, printing solid parts in TPU has a lot to recommend it when it comes to 150 gram robots. Not only can TPU parts be stiff enough to hold up structurally, but they can really take a beating and happily spring back into shape afterwards.

We’ve seen [Harry]’s work before on antweight combat robots, and it’s always nice to peek behind the scenes and gaze into the details. Especially for processes like this, where failures are far more educational than successes.

Robot Dog Has Animal Magnetism

Robot “dogs” are all the rage lately, but you probably haven’t seen one that can climb up a wall. Researchers in Korea have made one that can, assuming the wall is made out of a metal that a magnet can stick to at least. The robot, MARVEL or magnetically adhesive robot for versatile and expeditious locomotion, might be pressing its luck on acronyms, but it is pretty agile as you can see in the video below. Tests showed the robot walking on walls and ceilings. It can cross gaps and obstacles and can even handle a curved storage tank with paint and rust.

The robot weighs 8 kilograms (17.6 pounds), can carry 2 – 3 kg of payload, and operates without a tether. Each foot contains both an electropermanent magnet and magnetorheological elastomers. If you haven’t seen them before, an electropermanent magnet, or EPM, is a magnet that can be turned on or off electronically. The elastomer is a polymer containing ferromagnetic particles that can alter the material’s properties in response to a magnetic field.

EPMs have two parts. One part is a simple permanent magnet. The other is a soft core easily magnetized by a surrounding coil. If you magnetize the soft core to oppose the permanent magnet, the fields cancel out, effectively turning off the magnet. If you magnetize it the other way, it reinforces the field.

This is better than an electromagnet in this application because turning the magnet on or off only requires a brief pulse. If you want your robot to hang out on the ceiling with Spider Man indefinitely, you don’t have to worry about draining your batteries while keeping an electromagnet engaged.

Overall, an interesting robot. Most wall-climbing robots we’ve seen are pretty lightweight. We don’t see nearly as many that can have the feeling of clinging to the ceiling.

Continue reading “Robot Dog Has Animal Magnetism”

Differential Swerve Drive Is Highly Maneuverable

There are a variety of wheel designs out there that can provide for rotation and translation in various directions. The differential swerve drive, though, as demonstrated by [WildWillyRobots], uses regular wheels on a complex mount to achieve impressive directional flexibility.

The design uses a regular round wheel mounted on an axle, which has a gear on one end. This allows the wheel to be driven. The wheel and axle is mounted upon a circular carrier, which is then fitted with a pair of surrounding gears on bearings. Differentially driving these gears changes the way the drive behaves. With both gears driven in the same direction, the wheel rotates on its vertical axis to point in different directions. If both gears are driven in opposite direction, the wheel itself is driven. Relatively varying the speed of both gears allows the direction and drive of the wheel to be controlled. The result is a wheel that can rotate to any angle, and then be driven forwards or backwards as well.

Fitting a set of these wheels to a robot creates a highly maneuverable platform. As a bonus, it doesn’t have the drawback of poor grip that is common with various omniwheel-type designs.

Continue reading “Differential Swerve Drive Is Highly Maneuverable”

Omniwhegs Are Awesome Times Two

What’s the strangest wheel? The omniwheel. Unless you count whegs — “wheel legs” — as wheels. This research paper from Shanghai Technical University explores a mash-up of the two ideas, where the wheels roll as standard omniwheels until a servo on the axle unfurls them into their whegs configuration. The result? OmniWhegs!

The resulting vehicle is a bit of a departure from the original whegs concept, which used compliant mechanisms which passively balanced the force across the legs. Here, the omniwhegs are rigid and actually use a synchronization routine that you can see in the video embedded below.

If you can’t get enough omniwheels, you’re not alone. Here’s a rare three-wheeler, and here’s an omniwheel made of MDF. We haven’t seen enough whegs-based bots, but OutRunner is pretty astounding, and we think deserves a second look.

We’ve also seen wheels that convert to whegs before, but without the omni.  And we don’t know if that one ever made it out of render-of-a-robot phase.

So kudos to the Shanghai team for taking the strangest possible wheels and actually building them!

Continue reading “Omniwhegs Are Awesome Times Two”