TI Launchpad Adds Computer Control To A Robot Arm

[Eric Gregori] had an OWI535 toy robotic arm. Although cheap (coming it at around $30) the arm is only set up to be used via a wired control box. [Eric] knew he could do better by adding computer control via a TI Launchpad and motor driver peripheral.

The arm has shoulder, elbow, and wrist joints, a rotating base, and a gripper. All of these are actuated by 3V DC motors and have just two control wires. [Eric’s] motor driver add-on for the Launchpad works great in this case. It’s got three FAN8200 dual motor driver chips on board so it can control up to six motors. Once he made the hardware connections it’s just a matter of sending the commands to the Launchpad via its USB interface, but you will also need to use a larger microcontroller than comes with the Launchpad. Here he’s chosen an MSP430G2553.

In order to make things a little bit more fun he also wrote a GUI for controlling the arm from the computer. He used RobotSee, a programming language that lets you use an image of the hardware, and overlay the controls on top of it. Now he just needs to make this into a web interface and he can have a smartphone controlled crane game.

Don’t forget to check out the video after the break. Continue reading “TI Launchpad Adds Computer Control To A Robot Arm”

Strap Yourself In And Let This Robot Arm Shake The Bejesus Out Of You

This man is strapped onto the business end of a huge robotic arm. If you’ve seen videos of industrial robots on automobile assembly lines and the like, you know how fast and strong these machines are. But this isn’t headed for the factory floor, it’s a new flight simulator built do train Australian fighter pilots.

Researchers at Deakin University were looking for a way to give a fighter pilot a more realistic simulator experience. What they ended up with is an apparatus that can spin continuously on two axes. This lets the pilot feel what it might be like to stall and have the aircraft spinning out of control.

The video after the break is not to be missed. You’ll see the test pilot (read: guinea pig) flung this way and that to the point that we almost decided this should be a “Real or Fake” post. But we’re confident that this actually exists. We expect that future renditions will include the front portion of the aircraft and be completely enclosed in a projection dome, just like the Lexus driving simulator.

Continue reading “Strap Yourself In And Let This Robot Arm Shake The Bejesus Out Of You”

Double-pendulum Spray Gives This Graffiti Bot Some Style

Here’s an art exhibit that does its own painting. The Senseless Drawing Bot (translated) uses the back and forth motion of the wheeled based to get a double-pendulum arm swinging. At the end of the out-of-control appendage, a can of spray paint is let loose. We’re kind of surprised by the results as they don’t look like a machine made them.

The video after the break gives a pretty good synopsis of how the robot performs its duties. The site linked above is a bit difficult to navigate, but if you start digging you’ll find a lot of build information. For instance, it looks like this was prototyped with a small RC car along with sticks of wood as the pendulums.

We can’t help but be reminded of this robot that balances an inverted double pendulum. We wonder if it could be hacked to purposefully draw graffiti that makes a bit more sense than what we see here?

Continue reading “Double-pendulum Spray Gives This Graffiti Bot Some Style”

Snake-bot Gives Us The Mechanical Heevy-jeevies

Basilisk? Nope, just your run-of-the-mill giant serpentine robot build. This build aims to recreate Titanoboa, a prehistoric snake which measured more than fifty feet long and weighted over a ton. They’re well on their way to completing the goal, as what you see above is fully operational, lacking only cosmetic niceties which would only serve to make the beast less horrifying.

The video after the shows the snake getting round an open space, presumably at the eatArt headquarters in Vancouver. You may remember the team from one of their other builds also featured in that clip, the Mondo Spider. Eventually, the snake will have a rider just like the spider does, sitting in a saddle mounted just behind the head. There’s few details about the hardware, but we know it’s hydraulic, and that they raised $10k to make the build possible.

For some reason seeing these bots interact gives us flashbacks to childhood cartoons. Is it possible the eatArt crew has been watching too many old G.I. Joe cartoons and the like?

Continue reading “Snake-bot Gives Us The Mechanical Heevy-jeevies”

There’s A Lot Packed Into This BeagleBoard Controlled Rover

That black box is hiding all kinds of goodies that make this rover a hacking playground. [Andrey] built the device around a BeagleBoard, which offers the processing power and modules that he needed to make the rest of it work.

The control unit shrinks the pilot down to the rover’s size, using a cockpit that has a steering wheel and other controls, and a monitor playing the stream from the camera on the front of the bot. It has a WiFi adapter which allows control via the Internet. The camera, which can be rotated thanks to its servo mounting, feeds the video to the BeagleBoard where it is compressed using the h264 codec (more about that and the cockpit here) to lighten the streaming load. You’ll also find an ultrasonic rangefinder on the front for obstacle avoidance, and a magnetic compass for orientation information. Finally, a GPS bolsters that data, allowing you to plot your adventures on the map.

It’s great, but it will cost you. Material estimates are North of five hundred Euros!

Video: Working With The 3pi Robot’s Line Sensors

This week, we are serving up part five in our series where we are using the Pololu 3pi robot as a fancy development board for the ATmega328p processor. This week we are taking a quick break from working with the perpherals specific to the processor and will show how to work with the 3pi’s line sensors. A quick look at the schematic for the 3pi might lead you to think that you should be reading the line sensors with the A2D peripheral. Even though they are wired to the A2D pins, they need to be read digitally. In the video, [Jack] will show how to read raw values from the sensors and then how to calibrate the results so that you can get a nice clean 8-bit value representing what the sensors are seeing. Of course, that would happen under normal circumstances. Murphy had his way in this video and it turned out that our studio lighting was interfering a bit with the sensor readings when we were shooting so we didn’t get as good of a calibration as we would have liked when we shot.

Video is after the break.

In case you have missed the previous videos here are some links:

Part 1: Setting up the development environment
Part 2: Basic I/O
Part 3: Pulse Width Modulation
Part 4: Analog to Digital conversion

Continue reading “Video: Working With The 3pi Robot’s Line Sensors”

Pikachu Is Coming For You (especially On Carpet)

If you look closely, you’ll see that Pikachu isn’t sporting a pair of funky throwing stars, but is actually suspended between there. Our furry friend is just putting a happy face on this carpet roving robot called the Carpet Monkey V5. It’s been in the works for years, and this is just one more stop in the prototyping process as the development of version 6 is already under way.

The project is a testament to what can be accomplished using all of the design tools at your disposal. The motive mechanism was conceived as a cross between the qualities of legs and the ease of using wheels. Each of the appendages are covered with strategically placed points meant to grab onto carpet, and allow the ‘wheel’ to grip objects as the machine vaults over them. You can see that each has a spring mechanism to further facilitate gripping with each turn of the axle. This seems to go far beyond what usually comes out of hobby robotics, and we think that’s a great thing!

After the break there’s a video showing how all the parts of these grippers are assembled. See the bot cruising around the room at about 3 minutes in.

Continue reading “Pikachu Is Coming For You (especially On Carpet)”