Robotic Open Source Puppy Needs A Home

Personally, I am a fan of the real thing, but dogs aren’t an option for all. Plus, robotic dogs are easier to train and don’t pee on your couch. If you are looking to adopt a robotic companion, Stanford Pupper might be a good place to start. It’s a new open source project from the Stanford Robotics Student group,  a group of robotic hackers from Stanford University. This simple robotic quadruped looks pretty simple to build, but also looks like a great into to four-legged robots.

This is the first version of the design, but it looks pretty complete, built around a carbon fiber and 3D printed frame. The carbon fiber parts have to be cut out on a router, but you can order them pre-cut here, and you might be able to adapt it to easier materials. The Pupper is driven by twelve servos powered from a 5200 mAh 2S LiPo battery and a custom PCB that distributes the power. That means it could run autonomously.

Continue reading “Robotic Open Source Puppy Needs A Home”

Alexa, Shoot Me Some Chocolate

[Harrison] has been busy finding the sweeter side of quarantine by building a voice-controlled, face-tracking M&M launcher. Not only does this carefully-designed candy launcher have control over the angle, direction, and velocity of its ammunition, it also locates and locks on to targets by itself.

Here comes the science: [Harrison] tricked Alexa into thinking the Raspberry Pi inside the machine is a smart TV named [Chocolate]. He just tells an Echo to increase the volume by however many candy-colored projectiles he wants launched at his face. Simply knowing the secret language isn’t enough, though. Thanks to a little face-based security, you pretty much have to be [Harrison] or his doppelgänger to get any candy.

The Pi takes a picture, looks for faces, and rotates the turret base in that direction using three servos driven by Arduino Nanos. Then the Pi does facial landmark detection to find the target’s mouth hole before calculating the perfect parabola and firing. As [Harrison] notes in the excellent build video below, this machine uses a flywheel driven by a DC motor instead of being spring-loaded. M&Ms travel a short distance from the chute and hit a flexible, spinning disc that flings them like a pitching machine.

We would understand if you didn’t want your face involved in a build with Alexa. It’s okay — you can still have a voice-controlled candy cannon.

Continue reading “Alexa, Shoot Me Some Chocolate”

Nightmare Fuel Telepresence ‘Bot May Become Your Last Friend

After this pandemic thing is all said and done, historians will look back on this period from many different perspectives. The one we’re most interested in of course will concern the creativity that flourished in the petri dish of anxiety, stress, and boredom that have come as unwanted side dishes to stay-at-home orders.

[Hunter Irving] and his brother were really missing their friends, so they held a very exclusive hackathon and built a terrifying telepresence robot that looks like a mash-up of Wilson from Castaway and that swirly-cheeked tricycle-riding thing from the Saw movies. Oh, and to make things even worse, it’s made of glow-in-the-dark PLA.

Now when they video chat with friends, TELEBOT is there to make it feel as though that person is in the room with them. The Arduino Uno behind its servo-manipulated vintage doll eyes uses the friend’s voice input to control the wind-up teeth based on their volume levels. As you might imagine, their friends had some uncanny valley issues with TELEBOT, so they printed a set of tiny hats that actually do kind of make it all better. Check out the build/demo video after the break if you think you can handle it.

Not creepy enough for you? Try building your own eyes from the ground up.

Continue reading “Nightmare Fuel Telepresence ‘Bot May Become Your Last Friend”

Automated Pancake Making For Devotees Of Fluffy Pancakes

We have a weakness for automated pancake machines here at Hackaday, but in terms of complete pancake machines rather than CNC batter printers we’re surprised to see more from the rest of the world than we do from the USA. Perhaps this has something to do with differences in opinion on what constitutes a pancake, whether the moniker should be applied to a large and thin disk of cooked batter, or to a smaller, thicker, and fluffier variety. For Europeans only the former will do, while for Americans anything but the latter is simply crêpe. To restore American honour in the world of automated pancakes then, a team of students from Kennesaw State University in Georgia, USA, have built a pancake vending machine for fluffy American-style pancakes as part of their coursework.

Sadly for the team the COVID-19 pandemic put a stop to their lab work and stopped them making a fully functional vending machine, but the important part of robotic pancake making is something they’ve completely nailed. In the video below the break we see them testing various batter mixes before developing their mixer and batter delivery system, and finally a robotic flipper that cooks the pancakes on a griddle and delivers them to a plate.  It also has the unexpected benefit of stacking pancakes.

We’re sure that without the pandemic they would have made a fully-functional vending machine for lucky Georgia students to sate their appetites upon. Meanwhile for pancake-crazy readers, here are complete pancake making machines from South Africa, and from France.

Continue reading “Automated Pancake Making For Devotees Of Fluffy Pancakes”

Surgery Robot Is A Real Cut Up

A robot that performs surgery is a serious thing. One bug in the control system could end with disaster. Unless of course, you’re [Michael Reeves], in which case disaster is all part of the fun. (Video, embedded below.)

Taking inspiration from The da Vinci Surgical System, [Michael] set out to build a system that was faster, while still maintaining precision. He created a belt drive gantry system, not unlike many 3D printers, laser cutters, or woodworking CNC machines. Machines like this often use stepper motors. [Michael] decided to go with [Oskar Weigl’s] ODrive and brushless motors instead. The ODrive is on open source controller which turns off the shelf brushless motors — such as those found in R/C planes or hoverboards, into precision industrial servos. Sound familiar? ODrive was an entrant in the 2016 Hackaday Prize. [Michael] was even able to do away the ubiquitous limit switch by monitoring current draw with the ODrive.

It all adds up to a serious build. But this is [Michael “laser eye” Reeves] after all. The video is meant to be entertaining, with a hidden payload of education and inspiration. The fun starts when he arms the robot with a giant kitchen knife and performs “surgery” on a pineapple. If you want to know what happens when mannequins and fake blood enter the picture, then watch the video after the break.

Continue reading “Surgery Robot Is A Real Cut Up”

This Animatronic Mouth Mimics Speech With Servos

Of the 43 muscles that comprise the human face, only a few are actually important to speaking. And yet replicating the movements of the mouth by mechanical means always seems to end up only partly convincing. Servos and linkages can only approximate the complex motions the lips, cheeks, jaw, and tongue are capable of. Still, there are animatronics out there that make a good go at the job, of which this somewhat creepy mechanical mouth is a fine example.

Why exactly [Will Cogley] felt the need to build a mechanical maw with terrifying and fairly realistic fangs is anyone’s guess. Recalling his lifelike disembodied animatronic heart build, it just seems like he pursues these builds for the challenge of it all. But if you thought the linkages of the heart were complex, wait till you see what’s needed to make this mouth move realistically. [Will] has stuffed this pie hole with nine servos, all working together to move the jaw up and down, push and pull the corners of the mouth, raise and lower the lips, and bounce the tongue around.

It all seems very complex, but [Will] explains that he actually simplified the mechanical design to concentrate more on the software side, which is a text-to-speech movement translator. Text input is translated to phonemes, each of which corresponds to a mouth shape that the servos can create. It’s pretty realistic although somewhat disturbing, especially when the mouth is placed in an otherwise cuddly stuffed bear that serenades you from the nightstand; check out the second video below for that.

[Will] has been doing a bang-up job on animatronics lately, from 3D-printed eyeballs to dexterous mechatronic hands. We’re looking forward to whatever he comes up with next — we think.

Continue reading “This Animatronic Mouth Mimics Speech With Servos”

Cable Driven Robotic Joint

Even the oldest of mechanisms remain useful in modern technology. [Skyentific] has been messing with robotic joints for quite a while, and demonstrated an interesting way to use a pulley system in a robotic joint with quite a bit of mechanical advantage and zero backlash.

Inspired by the LIMS2-AMBIDEX robotic arm, the mechanism is effectively two counteracting sets of pulley, running of the same cable reel, with rollers allowing them to act around the bend of the joint. Increasing the mechanical advantage of the joint is simply a matter of adding pulleys and rollers. If this is difficult to envision, don’t work as [Skyentific] does an excellent job of explaining how the mechanism works using CAD models in the video below.

The mechanism is back drivable, which would allow it to be used for dynamic control using a motor with an encoder for position feedback. This could be a useful feature in walking robots that need to respond to dynamically changing terrain to stay upright, or in arms that need to push or pull without damaging anything. With properly tensioned cables, there is no backlash in the mechanism. Unfortunately cables can stretch over time, so it is something that needs to be considered when using this in a project.

Pulley systems have been with us for a very long time, and remain a very handy tool to have in your mechanical toolbox. A similar arrangement is used in the Da Vinci surgical robots to control their tiny manipulators. It would also be interesting to see this used in the already impressive robots of [James Bruton]. Continue reading “Cable Driven Robotic Joint”