Laser Etches Solar Absorbing Material

Having a laser cutter these days isn’t a big deal. But [Chunlei Guo], a professor at the University of Rochester, has a powerful femto-second pulse laser and used it to create what might be the perfect solar absorber. You can see a video about the work, below.

It stands to reason that white materials reflect most light and therefore absorb less energy than black materials — this is part of what makes a radiometer work. Tungsten, in particular, is a good metal for absorbing solar power, but this new laser treatment — which builds nanostructures on the surface of the metal — increases efficiency by 130% compared to untreated tungsten.

Continue reading “Laser Etches Solar Absorbing Material”

Teardown And Analysis Of A Cheap Solar Lamp

If you walk the aisles of a dollar store one constant that you will see worldwide is the Chinese solar lamp. Your dollar gets you a white LED behind plastic, mounted on a spike to stick into the ground, and with a solar cell on top. It charges in the sunlight during the day and then lights the LED for a few hours at nightfall. They are in gardens everywhere, and no doubt landfill sites are full of them because they do not last very long. [Giovanni Bernardo] had one that stopped working, so he subjected it to a teardown to find out what was up, and what made it tick (Italian, Google Translate link).

As expected, the culprit proved to be a leaking and corroded 1.2 volt NiMh cell, and its replacement with an AA cell brought the lamp back to life. But the interesting part of this tale comes from his teardown and analysis of the lamp’s components. It’s centered around a YX8016 battery charger and power management chip. The device has an amazing economy of design with only four components including the solar cell and the LED. The final component is a small inductor that forms part of the boost converter to keep the LED lit as the battery voltage falls. The chip switches at 580kHz, and produces a 3.2 volt supply.

If this is a subject that interests you, don’t forget to take a look at the power harvesting challenge we ran a while back.

Modular Solar-Powered IoT Sensors

Bringing a product to market is not easy, if it were everyone would be doing it, and succeeding. The team at Pycno is in the process of launching their second product, a modular solar powered IoT unit called Pulse. It’s always interesting to get an inside look when a company is so open during the development process, and see how they deal with challenges.

Pycno’s first product was a solar powered sensor suite for crops. This time round they are keeping the solar part, but creating a modular system that can accept wired or wireless connections (2G/3G/4G, WiFi, LoRa, GPS and Bluetooth 5) or modules that slide into the bottom of the unit. They plan to open source the module design to allow other to design custom modules, which is a smart move since interoperability can be a big driving factor behind adoption. The ease of plugging in sensors is a very handy feature, since most non-Hackaday users would probably prefer to not open up expensive units to swap out sensors. The custom solar panel itself is pretty interesting, since it features an integrated OLED display. It consists of a PCB with the cutout for the display, with solar cells soldered on before the whole is laminated to protect the cells.

Making a product so completely modular also has some pitfalls, since it can be really tricky to market something able to do anything for anybody. However, we wish them the best of luck with their Kickstarter (video after the break) and look forward to seeing how the ecosystem develops.

When a large community develops around a modular ecosystem, it can truly grow beyond the originator’s wildest dreams. Just look at Arduino and Raspberry Pi. We’re also currently running a contest involving boards for the Feather form factor if you want to get in on the act. Continue reading “Modular Solar-Powered IoT Sensors”

Building A Low-Tech Website For Energy Efficiency

In an age of flashy jQuery scripts and bulky JavaScript front-end frameworks, loading a “lite” website is like a breath of fresh air. When most of us think of lightweight sites, though, our mind goes to old-style pure HTML and CSS sites or the intentionally barebones websites of developers and academics. Low-tech Magazine, an intentionally low-tech and solar-powered website, manages to incorporate both modern web aesthetics and low-tech efficiency in one go.

Rather than hosting the site on data centers – even those running on renewable power sources – they have a self-hosted site that is run on solar power, causing the site to occasionally go off-line. Their model contrasts with the cloud computing model, which allows more energy efficiency at the user-side while increasing energy expense at data centers. Each page on the blog declares the page size, with an average page weight of 0.77 MB, less than half of the average page size of the top 500,000 most popular blogs in June 2018.

Some of the major choices that have limited the size of the website include building a static site as opposed to a dynamic site, “dithering” images, sparing a logo, staying with default typefaces, and eliminating all third-party tracking, advertising services, and cookies. Their GitHub repository details the front-end decisions  including using unicode characters for the site’s logo rather than embedding an SVG. While the latter may be scalable and lightweight in format it requires distribution to the end-user, which can involve a zipped package with eps, ai, png, and jpeg files in order to ensure the user is able to load the image.

As for the image dithering, the technique allows the website to maintain its characteristic appearance while still minimizing image quality and size. Luckily for Low-tech Magazine, the theme of the magazine allows for black and white images, suitable for dithering. Image sprites are also helpful for minimizing server requests by combining multiple small images into one. Storage-wise, the combined image will take up less memory and only load once.

There are also a few extraneous features that emphasize the website’s infrastructure. The background color indicates the capacity of the solar-charged battery for the website’s server, while other stats about the server’s location (time, sky conditions, forecast) also help with making the website availability in the near future more visible. Who knows, with the greater conscience on environmental impact, this may be a new trend in web design.

ESP32 Makes Great MPPT Controller In Low-Cost Solar Installation

Solar power projects have become, in general, a matter of selecting components like panels and batteries, hooking them together with industry-standard connectors, and sitting back to watch the free electricity flow. As such, solar projects have become a bit boring, so it’s not often we see one that attracts our attention the way this dirt-cheap open-source solar project does.

The backstory on [Tim O’Brien]’s DIY off-grid PV system starts with his desire to charge his eWheel, which amounts to a battery-powered standing unicycle. They look like a fun option for getting around an urban environment if you have the requisite degree of coordination, which we clearly lack. But charging something like that or an eBike is a great use case for solar, especially since [Tim] happened upon a 450W PV panel on the cheap. Sadly, the panel was a commercial unit, and compatible off-the-shelf MPPT, or maximum power-point tracking, controllers are expensive.

His solution was to build his own controller using a cheap DC-DC converter that just so happens to have serial remote control. An ESP32 monitors the panel voltage and controls the buck converter to run whatever he wants. When he’s not charging his eWheel, the system runs his laptop and router. As a bonus, the ESP32 talks to IoT services like Adafruit.io and Thingspeak, allowing him to track MPPT data without shipping it off to parts unknown.

While we appreciate a DIY MPPT controller and like [Tim]’s build, we feel like the documentation needs a bit of fleshing out. With solar installations, the devil is in the details, and not addressing seemingly mundane issues like cable routing and connector installation can lead to disaster.

Solar Powered Weeding Tractor Uses Manual Labour

You might not have realised this, but there’s a group of hackers out there without whom you wouldn’t be able to put food on the table. They hack under the blazing sun and pouring rain, and have been doing it for thousands of years. Known more commonly as farmers, their creative problem solving skills with whatever is lying around can be absolutely jaw dropping. [Andrew Mans] is one such individual. He built a solar powered weeding tractor that uses human labour to do the actual weeding.

We’ll be honest, this made us go “Wait, what?” for a few seconds, until the ingenuity of it all sank in. Crawling at a snails pace across the onion fields at Mans Organics, the contraption allows 3 workers to lie comfortably on their stomachs in a shaded tent, while pulling weeds that grow too close to the crop for conventional mechanised weeding methods. While this might seem like a slightly crappy job at first glance, there are definitely worse jobs a farm (or in an office) and actually looks quite relaxing. While the picking could of course be automated, this is no small task, especially when your business is food production, not robotics.

Power is provided from four 250 W solar panels on the roof, which charge a bank of deep cycle batteries and the drive train. A pure sine wave converter provides power to a 240 V motor driver which turns it back into DC to run the drive motor. [Andrew] admits this back and forth voltage conversion is overcomplicated and inefficient but it’s the sort of thing that quickly happens when you hack a hacked design. The axle and 5-speed gearbox was salvaged from an old 3 ton truck and is mounted vertically to save space. The hydraulic steering is controlled by one of the human weed pickers, who just makes small course corrections as required.

We love the weird combo of old and new in this hack. Check out the machine in action and detailed walk-around after the break. Continue reading “Solar Powered Weeding Tractor Uses Manual Labour”

Soaring With The Sun: 4 Years Of Solar RC Planes

Many of us have projects that end up spanning multiple years and multiple iterations, and gets revisited every time inspiration strikes and you’ve forgotten just how much work and frustration the previous round was. For [Daniel Riley] AKA [rctestflight] that project is a solar powered RC plane which to date spans 4 years, 4 versions and 13 videos. It is a treasure trove of information collected through hard experience, covering carbon fibre construction techniques, solar power management and the challenges of testing in the real world, among others.

Solar Plane V1 had a 9.5 ft / 2.9 m carbon fibre skeleton wing, covered with transparent film, with the fragile monocrystaline solar cells mounted inside the wing. V1 experienced multiple crashes which shattered all the solar cells, until [Daniel] discovered that the wing flexed under aileron input. It also did not have any form of solar charge control. V2 added a second wing spar to a slightly longer 9.83 ft / 3 m wing, which allowed for more solar cells.

Solar Plane V3 was upgraded to use a single hexagonal spar to save weight while still keeping stiff, and the solar cells were more durable and efficient. [Daniel] did a lot of testing to find an optimal solar charging set-up and found that using the solar array to charge the batteries directly in a well-balanced system actually works equally well or better than an MPPT charge controller.

V4 is a departure from the complicated carbon fibre design, and uses a simple foam board flying wing with a stepped KF airfoil instead. The craft is much smaller with only a 6 ft / 1.83 m wingspan. It performed exceptionally well, keeping the battery fully charged during the entire flight, which unfortunately ended in a crash after adjusting the autopilot. [Daniel] suspects the main reasons for the improved performance are higher quality solar panels and the fact that there is no longer film covering the cells.

We look forward to seeing where this project goes! Check out Solar Plane V4 after the break.

Continue reading “Soaring With The Sun: 4 Years Of Solar RC Planes”