Making Parts Feeders Work Where They Weren’t Supposed To

[Chris Cecil] had a problem. He had a Manncorp/Autotronik MC384V2 pick and place, and needed more feeders. The company was reluctant to support an older machine and wanted over $32,000 to supply [Chris] with more feeders. He contemplated the expenditure… but then came across another project which gave him pause. Could he make Siemens feeders work with his machine?

It’s one of those “standing on the shoulders of giants” stories, with [Chris] building on the work from [Bilsef] and the OpenPNP project. He came across SchultzController, which could be used to work with Siemens Siplace feeders for pick-and-place machines. They were never supposed to work with his Manncorp machine, but it seemed possible to knit them together in some kind of unholy production-focused marriage. [Chris] explains how he hooked up the Manncorp hardware to a Smoothieboard and then Bilsef’s controller boards to get everything working, along with all the nitty gritty details on the software hacks required to get everything playing nice.

For an investment of just $2,500, [Chris] has been able to massively expand the number of feeders on his machine. Now, he’s got his pick and place building more Smoothieboards faster than ever, with less manual work on his part.

We feature a lot of one-off projects and home production methods, but it’s nice to also get a look at methods of more serious production in bigger numbers, too. It’s a topic we follow with interest. Video after the break.

Continue reading “Making Parts Feeders Work Where They Weren’t Supposed To”

The Brymen BM788BT shown along side other digital multimeters.

New Brymen Bluetooth BM788BT Digital Multimeter Coming Soon

If you’re into electronics you can never have too many digital multimeters (DMMs). They all have different features, and if you want to make multiple measurements simultaneously, it can pay to have a few. Over on his video blog [joe smith] reviews the new Brymen BM788BT, which is a new entry into the Bluetooth logging meter category.

This is a two-part series: in the first he runs the meter through its measurement paces, and in the second he looks at the Bluetooth software interface. And when we say “new” meter, we mean brand new, this is a review unit that you can’t yet get in stores.

According to a post on the EEVblog, this Bluetooth variant was promised five years ago, and back then Brymen even had the Bluetooth module pin header on the PCB, but it has taken a long time to get the feature right. If you scroll through the thread you will find that Brymen has made its protocol specification available for the BM780 series meters.

It looks like some Bluetooth hacking might be required to get the best out of this meter. Of course we’re no strangers to hacking DMMs around here. We’ve taken on the Fluke 77 for example, and these DMM tweezers.

Continue reading “New Brymen Bluetooth BM788BT Digital Multimeter Coming Soon”

DIY Soldering Tweezers, Extra Thrifty

It started when [Mitxela] was faced with about a hundred incorrectly-placed 0603 parts. Given that he already owned two TS101 soldering irons, a 3D printer, and knows how to use FreeCAD (he had just finished designing a custom TS101 holder) it didn’t take long to create cost-effective DIY soldering tweezers.

Two screws allow adjusting the irons to ensure the tips line up perfectly.

The result works great! The TS101 irons are a friction-fit and the hinge (designed using the that-looks-about-right method) worked out just fine on the first try. Considering two TS101 irons are still cheaper than any soldering tweezer he could find, and one can simply undock the TS101s as needed, we call this a solid win.

One feature we really like is being able to precisely adjust the depth of each iron relative to each other, so that the tips can be made to line up perfectly. A small screw and nut at the bottom end of each holder takes care of that. It’s a small but very thoughtful design feature.

Want to give it a try? The FreeCAD design file (and .stl model) is available from [Mitxela]’s project page. Just head to the bottom to find the links.

We’ve seen DIY soldering tweezers using USB soldering irons from eBay but the TS101 has a form factor that seems like a particularly good fit.

Buyer Beware: Cheap Power Strips Hold Hidden Horrors

We’ve got a love-hate relationship with discount tool outlet Harbor Freight: we hate that we love it so much. Apparently, [James Clough] is of much the same opinion, at least now that he’s looked into the quality of their outlet strips and found it somewhat wanting.

The outlet strips in question are Harbor Freight’s four-foot-long, twelve-outlet strips, three of which are visible from where this is being written. [James] has a bunch of them too, but when he noticed an intermittent ground connection while using an outlet tester, he channeled his inner [Big Clive] and tore one of the $20 strips to bits. The problem appears to be poor quality of the contacts within each outlet, which don’t have enough spring pre-load to maintain connection with the ground pin on the plug when it’s wiggled around. Actually, the contacts for the hot and neutral don’t look all that trustworthy either, and the wiring between the outlets is pretty sketchy too. The video below shows the horrors within.

What’s to be done about this state of affairs? That’s up to you, of course. We performed the same test on all our outlets and the ground connections all seemed solid. So maybe [James] just got a bad batch, but he’s still in the market for better-quality strips. That’s going to cost him, though, since similar strips with better outlets are about four times the price of the Harbor Freight units. We did find a similar strip at Home Depot for about twice the price of the HF units, but we can’t vouch for the quality. As always, caveat emptor.

Continue reading “Buyer Beware: Cheap Power Strips Hold Hidden Horrors”

Fiber Laser Gives DIY PCBs A Professional Finish

While low-cost professional PCB fabrication has largely supplanted making circuit boards at home, there’s still something to be said for being able to go from design to prototype in an afternoon. Luckily we aren’t limited to the old toner transfer trick for DIY boards these days, as CNC routers and powerful lasers can be used to etch boards quickly and accurately.

But there’s still a problem — those methods leave you with a board that has exposed traces. That might work in a pinch for a one-off, but such boards are prone to shorts, and frankly just don’t look very good. Which is why [Mikey Sklar] has been experimenting with applying both a soldermask and silkscreen to his homemade boards.

The process he describes starts after the board has already been etched. First he rolls on the soldermask, and then sandwiches the board between layers of transparency film and clear acrylic before curing it under a UV light. After two coats of the soldermask, the board goes into a fiber laser and the silkscreen and mask layers are loaded into the software and the machine is set to a relatively low power (here, 40%). The trick is that the mask layer is set to run four times versus the single run of the silkscreen, which ensures that the copper is fully exposed.

Since the board doesn’t need to be moved between operations, you don’t have to worry about the registration being off. The end result really does look quite nice, with the silkscreen especially popping visually a lot more than we would have assumed.

We’ve previously covered how [Mikey] uses his CNC router and fiber laser to cut out and etch the boards, so this latest installment brings the whole thing full circle. The equipment you’ll need to follow along at home isn’t cheap, but we can’t argue with the final results.

Continue reading “Fiber Laser Gives DIY PCBs A Professional Finish”

Pluto’s Not A Planet, But It Is A Spectrum Analyzer

The RTL-SDR dongles get most of the love from people interested in software-defined radio, but the Pluto is also a great option, too. [FromConceptToCircuit] shares code to turn one of these radios into a spectrum analyzer that sweeps up to 6 GHz and down to 100 MHz. You can see a video of how it works below.

While it may seem that 100 MHz is a bit limiting, there’s plenty of activity in that range, including WiFi, Bluetooth, radio systems, both commercial and amateur, and even cell phones.

Continue reading “Pluto’s Not A Planet, But It Is A Spectrum Analyzer”

A Portable Electronics Workstation

You don’t see them as often as you used to, but it used to be common to see “electronics trainers” which were usually a collection of components and simple equipment combined with a breadboard, often in a little suitcase. We think [Pro Maker_101’s] portable electronics workstation is in the same kind of spirit, and it looks pretty nice.

The device uses a 3D printed case and a custom PC board. There are a number of components, although no breadboard. There is a breakout board for Raspberry Pi GPIO, though. So you could use the screw terminals to connect to an external breadboard. We were thinking you could almost mount one as a sort of lid so it would open up like a book with the breadboard on one side and the electronics on the other. Maybe version two?

One thing we never saw on the old units? An HDMI flat-screen display! We doubt you’d make one exactly like this, of course, but that’s part of the charm. You can mix and match exactly what you want and make the prototyping station of your dreams. Throw in a small portable soldering iron, a handheld scopemeter, and you can hack anywhere.

We’d love to see something like this that was modular. Beats what you could build in 1974.

Continue reading “A Portable Electronics Workstation”