Six Years, A Giant Robot, And A Kickstarter

robot

Since 2007, [Jamie Mantzel] has been building a huge remote-controlled walking robot. If you’ve been following him on his YouTube channel and blog, you’ve seen the very beginnings of him building a lumber mill to create a workshop, making the legs for his robot, and improving his welding rig. This week, though, has been very special. [Jamie] has finally finished his giant robot project, bidding closed the fevered dream of a madman who awakes to a 10 foot robot in his yard.

The giant robot is constructed nearly entirely out of scrap aluminum. In the interest of simplicity, [Jamie] has come up with some interesting techniques to scale up conventional RC gear to power huge motors swinging giant legs: the steering motors are powered by manual switches, but these switches are activated by servos. A brilliantly simple solution to driving high-current loads if we do say so ourselves.

[Jamie]’s robot has garnered a lot of attention over the years, so much so that toy companies have licensed his designs for a line of battling combat spiderbots. [Jamie] believes his robots should be more educational, so he’s launched a Kickstarter for his own version as a kit. With this kit, getting the bug tank robot up and running isn’t simply a matter of pulling it out of the box and installing batteries; [Jamie]’s version is an actual kit with linkages that must be assembled. We know which version we’d want.

It’s an amazingly impressive project, and we’re glad to see such an awesome cat has finally realized his dream of a walking aluminum arachnid of death.

This Bear Can Pass A Turing Test

bear

Some thought the first artificial intelligence would come about as an accident, others as a war machine that decides the only way to protect humans is to kill them all. It turns out both these ideas were wrong. The first AI is apparently a teddy bear, available on Kickstarter for $60.

The Supertoy Kickstarter is selling a mechatronic teddy bear with motors, speakers, and enough electronics to connect to a cell phone. After plugging your cell phone and stuffing it in Teddy’s thorax, the bear comes alive with an intelligence all his own and a voice seemingly lifted from [Peter Griffin].

Needless to say, we’re just a bit skeptical that Teddy here can perform as demonstrated in the Kickstarter video. While the team behind Teddy has developed a successful talking chatbot before, the video makes this tech seem too good. Even the voice sounds like a real person with a microphone, and not like a clunky GPS personality.

Feel free to speculate in the comments on how good this tech can possibly be.

Is A LEGO 3D Printer By Definition Self-replicating?

lego-3d-printer

LEGO parts are plastic. 3D printers make parts out of plastic. So the transitive property tells us that a LEGO 3D printer should be able to recreate itself. This one’s not quite there yet, mostly because it doesn’t use plastic filament as a printing medium. Look close and you’ll probably recognize that extruder as the tip of a hot glue gun. If all else fails you can use the machine as a precision hot glue applicator.

The instructions to make your own version include the design reference and a few ideas for getting the most out of the glue dispenser. For the design phase [Matstermind] used LEGO Digital Designer. It’s basically CAD with the entire library of LEGO parts available as building blocks. from there he assembled the machine which is controlled by an NXT brick. He goes on to link to a few different printing mediums. There’s instructions for using crayons to make colored glue sticks, as well as a method of printing in sugar using the hot glue extruder.

We remember seeing one other LEGO 3D printer. That one didn’t use an extruder either. It placed blocks based on the design to be printed.

Continue reading “Is A LEGO 3D Printer By Definition Self-replicating?”

Make Your Own Electronic Children’s Toys

diy-childrens-toys

[Miria Grunick’s] son nephew is two years old. If you’ve ever looked at that age range in the toy aisle we sure you’ve noticed that there’s a mountain of cheap electronic stuff for sale. Manufactures are cramming LEDs and noise makers into just about all kids stuff these days. But [Miria] thought why not just make him something myself? She calls this the Blinky Box. It’s an acrylic enclosure stuffed with pretty LEDs that is controlled with a few buttons.

It’s driven by a Teensy 3 board which monitors a half dozen colorful buttons, a mode selector on the side, and an on/off switch. The device is powered by a Lithium battery that recharges via USB. And of course there’s a strip of individually addressable RGB LEDs inside.

The demo shows that one mode allows you to press a button color and have the LEDs change to it. But there are other features like fade and scroll. She also mentions that since it can be reprogrammed the toy can grow with hime. Maybe it’ll be a Simon Says game. But eventually she hopes he’ll use it to learn the basics of programming for himself.

Continue reading “Make Your Own Electronic Children’s Toys”

We’ve Found The Awesome Singularity

tardis

Yes, that’s exactly what you think it is. A Transformer. That transforms into the TARDIS.

This masterpiece of pop culture is the work of [Nonnef] over on Instructables. After the inspiration to create this work of art struck, [Nonnef] started modeling this Transformer and TARDIS in clay to make everything fit together just right. After a good bit of 3D modelling, the Doctor’s robotic wife was ready for printing.

If you’re going to print one of these for yourself, be prepared for a very long print. [Nonnef] says the latest version took about 30 hours on his RepRap with a .35 mm nozzle. In the end nearly the entire Transformer came directly from a 3D printer, the only additional parts needed being a pen spring and a small screw. Paint is, of course, optional.

All the files are available on the Instructable.

The Model Engineer

engineer

 

As a child, [Mike Chrisp] saw a film featuring one of the great narrow gauge English locomotives. While the story was inordinately heartening, as soon as he walked out of the theatre, [Mike] said to himself that he had to have one of these locomotives. Thus began a lifelong adventure in model engineering.

[Mike] builds model locomotives and other steam-powered means of motive power. Everything from five-inch gauge locomotives to small steam tractors is liable to come out of his small workshop, all built with the machining and engineering excellence only a lifetime of experience can provide.

As for what drives [Mike] to stay in his workshop for long hours, he says his shop is just a place to be, a place to tinker, and a place to simply think about things, even if his hands aren’t getting dirty.  There’s something beautiful about that, even if [Mike] were to hide the products of his skill away from the world.

LegoDuino For Kid-friendly Microcontrollers

Lego

[J. Benschop] is teaching his nine-year-old son electronics by giving him a few wires, LEDs, and batteries. Eventually, the son looked over at his dad’s workbench and wondered what the little bug-shaped rectangles did. Microcontrollers and embedded programming are just a bit too advanced for someone who hasn’t hit a double-digit age, but [J] figured he could still have his son experience the awesomeness of programming electronics by building a custom electronic Lego microcontroller system.

This isn’t as complex as a Lego Mindstorms system. Really, it’s only an ATMega and a 2.4 GHz wireless transceiver. Still, that’s more than enough to add a few sensors and motor drivers, and an awesome introduction to electronics development. The enclosure for the LegoDuino is, of course, compatible with every Lego brick on the planet. It’s made from a 6×16 plate, three blocks high, with enough room for the electronics, three AA batteries, and the IO headers.

Programming an ATMega, even with the Arduino IDE, is a little beyond the capacity of [J. Benschop]’s nine-year-old son, so he made a few changes to the Minibloq programming environment to support the newly created LegoDuino. It’s a graphical programming language that kids of just about any age can pick up quickly, and with the included RF transceiver inside the ‘Duino, it can even be programmed wirelessly.

It’s an amazing piece of work, and much, much simpler than even the noob-friendly Lego Mindstorms. Not as powerful, though, but when you’re just teaching programming and electronics, you really don’t need much.