Graphene Tattoos: The Future Of Continuous Health Monitoring?

In the near future, imagine a world where your health is continuously monitored, not through bulky devices but through an invisible graphene tattoo. Developed at the University of Massachusetts Amherst, these tattoos could soon detect a range of health metrics, including blood pressure, stress levels, and even biomarkers of diseases like diabetes. This technology, though still in its infancy, promises to revolutionize how we monitor health, making it possible to track our bodies’ responses to everything from exercise to environmental exposure in real-time.

Graphene, a single layer of carbon atoms, is key to the development of these tattoos. They are flexible, transparent, and conductive, making them ideal for bioelectronics. The tattoos are so thin and pliable that users won’t even feel them on their skin. In early tests, graphene electronic tattoos (GETs) have been used to measure bioimpedance, which correlates with blood pressure and other vital signs. The real breakthrough here, however, is the continuous, non-invasive monitoring that could enable early detection of conditions that usually go unnoticed until it’s too late.

While still requiring refinement, this technology is advancing rapidly. Graphene still amazes us, but it’s no longer just science fiction. Soon, these tattoos could be a part of everyday life, helping individuals track their health and enabling better preventative care. Since we’re hackers out here –  but this is a far fetch – combining this knowledge on graphene production, and this article on tattooing with a 3D printer, could get you on track. Let us know, what would you use graphene biosensors for?

Continue reading “Graphene Tattoos: The Future Of Continuous Health Monitoring?”

What The Well-Dressed Radio Hacker Is Wearing This Season

We’ve seen a lot of interest in Meshtastic, the license-free mesh network for small amounts of data over the airwaves. [Ham Radio Rookie] was disappointed with his Meshtastic node’s small and inefficient antennas. So he decided to make what we suspect is the world’s first Meshtastic necktie.

We assume the power is low enough that having it across your thorax is probably not terrible. Probably. The tie is a product of a Cricut, Faraday cloth, and tiny hardware (the Xiao ESP32S3 and the WIO SX1262 board). The biggest problem was the RF connector, which needed something smaller than the normal BNC connector.

Continue reading “What The Well-Dressed Radio Hacker Is Wearing This Season”

Fixing a hoodie zipper with a drinking straw and hot glue.

Hack That Broken Zipper!

We’ve all been there. That sad day when the zipper on our favorite hoodie, bag, or pair of pants breaks in some seemingly irreparable way. But there is hope, and [Magic Stitches] is gonna show you how to make some common repairs using household items and, in some cases, just a little bit of easy hand sewing. After a warm up with a kitchen fork, the video moves on to more significant problems.

The first problem — a chewed-away zipper bottom — is quite common, but requires no sewing to fix. As you’ll see in the video below, all it takes is a drinking straw, some hot glue, a lighter, and a pair of scissors to recreate the plastic bit that keeps the zipper from splitting in twain.

Sewing the teeth of a zipper together after cutting the tape just enough to slide the head back on. Now the second issue concerns a pair of pants wherein the head has come off the static side of the zipper. This one seems impossible to fix, but [Magic Stitches] cuts into the static side about five teeth from the bottom, slides the head back on, and sews the bottom of the zipper together.

This one we take a little bit of an issue with, because it assumes that you can get your jeans on over your hips without needing the zipper head to be fully down. But what else are you going to do but throw the jeans away upcycle the jeans into a fanny pack or something to immortalize them?

Continue reading “Hack That Broken Zipper!”

A picture of a stainless steel ring with a phillips screwdriver bit protruding from it sitting slightly askance atop a matching ring with a phillips head cut out like that of a screw. They are the same size so they can mesh when placed together.

Making Products For Fun And (Probably No) Profit

If you’re like most makers, you have a few product ideas kicking about, but you may not have made it all the way to production of those things. If you’re thinking about making the leap, [Simone Giertz] recently discussed all the perils and pitfalls of the process from idea to reality.

The TLDR is that there’s a big difference between making one item and making hundreds or thousands of them, which you probably already knew, but it is nice to see what sort of issues can crop up in this seemingly simple example of the Yetch Screwdriver Ring. It turns out that the metalworking skills of tool making and jewelry making rarely overlap in the contract manufacturing world.

[Giertz] also shares some of the more mundane, yet terrifying, parts of business like finally committing to bulk orders and whether it’s wise to go with intermediaries when working with suppliers overseas. She also keys us into parts of the process where things can go wrong, like how product samples typically use a different manufacturing process than bulk for practical reasons and how you need to have very specific quality control requirements not just decide if a product is good enough based on vibes.

If you’d like some more advice on making your own products, check out [Carrie Sundra]’s Supercon talk about Manufacturing on a Shoestring Budget.

Continue reading “Making Products For Fun And (Probably No) Profit”

Wearables queen [Becky Stern] with a microcontroller and a speaker. And a skull!

Wearable Tech Tips Directly From The Queen

What’s the only thing cooler than building something electronic? That’s right — wearing it proudly for all to see.

But maybe you’re not into wearables. Maybe it’s because you’re afraid of sewing, or simply scared that you won’t be able to launder that blinkenshirt you’ve always wanted to make. Well, the undisputed queen of wearables — [Becky Stern] — has a bunch of beginner tips for making DIY wearables. She’s created dozens and dozens of wearable projects and matching tutorials over the years and has graced these pages many times.

As [Becky] points out, once you have your idea sorted, the next thing you need is the tools to get the skills to do the parts you don’t know how to do yet. Even if that’s almost all of it, then this is the guide for you. Importantly, [Becky] reminds us that we should only bite off what we can chew, and that ready-made modules and such are perfectly fine.

There are some tips here that may surprise you. For instance, [Becky] recommends against conductive thread for beginners who already know how to sew by hand, largely because of power delivery and other issues. She also is somewhat anti-lithium battery pouch, preferring instead to use a couple of AAs or a USB battery bank for the renewability aspect.

Be sure to check out the video after the break, which has these tips and more.
Continue reading “Wearable Tech Tips Directly From The Queen”

Custom Smartwatch Makes Diabetes Monitoring Easier For Kids

Living with Type 1 diabetes is a numbers game. There’s not a moment in the day free from the burden of tracking your blood glucose concentration, making “What’s your number?” a constant question. Technology can make that question easier to ask and answer, but for T1D patients, especially the kids who the disease so often impacts, all that tech can be a distraction.

To solve that problem for his son, [Andrew Childs] built this custom T1D smartwatch. An Apple Watch, which integrates easily into the Dexcom CGM ecosystem, seems an obvious solution, but as [Andrew] points out, strapping something like that on a nine-year-old boy’s wrist is a recipe for disaster. After toying with some prototypes and working out the considerable difficulties of getting a stable BLE connection — the device needs to connect to his son’s iPhone to get CGM data — [Andrew] started work on the physical design.

The watch uses an ESP32-S3 on a custom PCB, as well as a 1.69″ TFT IPS display and a LiPo battery. The board also has an accelerometer for activity monitoring and a vibrator for haptic feedback. Getting all that into a case was no mean feat, especially since some degree of water resistance and shockproofing would be needed for the watch to survive. [Andrew] had a case made by a local 3D printing company, and he managed to source custom-cut and silkscreened glass for the face. The result is remarkably professional-looking, especially for a software developer who hadn’t really stretched his maker wings much before tackling this project.

[Andrew] doesn’t appear to have made build files available yet, although he does say he intends to open-source the project at some point. We look forward to that as it’ll be a big help to anyone trying to hack diabetes care. Until then, if you need a primer on continuous glucose monitoring, we’re happy to oblige.

‘Robotic’ Dress Uses Simple Techniques To Combine 3D Printed Parts With Fabric

By and large, our clothes don’t actively move. They’re simple pieces of fabric assembled to sit nicely on our bodies, and little more. [anoukwipprecht] created something a little more technological and confronting, though, with the Robotic Open-Source Scale Dress.

Right from the drop, you can see what the dress is all about. It’s an open-shoulder design that has eight large moving scales mounted on the front. These scales are printed, and each features its own servo for independent movement. The scale baseplates are designed to hide the servos themselves, creating a sleeker look that hides the mechanism underneath. Each baseplate is also perforated with holes, allowing it to be sewn on to the base garment in a stout fashion. The dress itself is created with thick neoprene fabric, enabling it to take the weight of the scale assemblies without sagging or pulling away from the body. You can even customize the scales in various ways—such as adding feathers instead.

The dress is a neat piece, and would catch eyes for its pointy scales alone. The fact that they can start moving at any time only increases the garment’s impact. We’ve seen some other great fashionable uses of 3D printing before, too, like these awesome printed shoes. Meanwhile, if you’re printing your own garments in your home lab, don’t hesitate to let us know! Or, even better… wear them to the next Hackaday event!