Spatial Audio In A Hat

Students from the ECE4760 program at Cornell have been working on a spatial audio system built into a hat. The project from [Anishka Raina], [Arnav Shah], and [Yoon Kang], enables the wearer to get a sense of the direction and proximity of objects in the immediate vicinity with the aid of audio feedback.

The heart of the build is a Raspberry Pi Pico. It’s paired with a TF-Luna LiDAR sensor which is used to identify the range to objects around the wearer. The sensor is mounted on a hat, so the wearer can pan the sensor from side to side to scan the immediate area for obstacles. Head tracking wasn’t implemented in the project, so instead, the wearer uses a potentiometer to indicate to the microcontroller the direction they are facing as they scan. The Pi Pico then takes the LIDAR scan data, determines the range and location of any objects nearby, and creates a stereo audio signal which indicates to the wearer how close those objects are and their relative direction using a spatial audio technique called interaural time difference (ITD).

It’s a neat build that provides some physical sensory augmentation via the human auditory system. We’ve featured similar projects before, too.

Continue reading “Spatial Audio In A Hat”

Brilliant Labs Has New Smart Glasses, With A New Display

Brilliant Labs have been making near-eye display platforms for some time now, and they are one of the few manufacturers making a point of focusing on an open and hacker-friendly approach to their devices. Halo is their newest smart glasses platform, currently in pre-order (299 USD) and boasting some nifty features, including a completely new approach to the display.

Development hardware for the Halo display. The actual production display is color, and integrated into the eyeglasses frame.

Halo is an evolution of the concept of a developer-friendly smart glasses platform intended to make experimentation (or modification) as accessible as possible. Compared to previous hardware, it has some additional sensors and an entirely new approach to the display element.

Whereas previous devices used a microdisplay and beam splitter embedded into a thick lens, Halo has a tiny display module that one looks up and into in the eyeglasses frame. The idea appears to be to provide the user with audio (bone-conduction speakers in the arms of the glasses) as well as a color “glanceable” display for visual data.

Some of you may remember Brilliant Labs’ Monocle, a transparent, self-contained, and wireless clip-on display designed with experimentation in mind. The next device was Frame, which put things into a “smart glasses” form factor, with added features and abilities.

Halo, being in pre-release, doesn’t have full SDK or hardware details shared yet. But given Brilliant Labs’ history of fantastic documentation for their hardware and software, we’re pretty confident Halo will get the same treatment. Want to know more but don’t wish to wait? Checking out the tutorials and documentation for the earlier devices should give you a pretty good idea of what to expect.

Close-up view of the Solaria Ultra Grand Complication watch

Time, Stars, And Tides, All On Your Wrist

When asked ‘what makes you tick?’ the engineers at Vacheron Constantin sure know what to answer – and fast, too. Less than a year after last year’s horological kettlebell, the 960g Berkley Grand Complication, a new invention had to be worked out. And so, they delivered. Vacheron Constantin’s Solaria Ultra Grand Complication is more than just the world’s most complicated wristwatch. It’s a fine bit of precision engineering, packed with 41 complications, 13 pending patents, and a real-time star tracker the size of a 2-Euro coin.

Yes, there’s a Westminster chime and a tourbillon, but the real novelty is a dual-sapphire sky chart that lets you track constellations using a split-second chronograph. Start the chrono at dusk, aim your arrow at the stars, and it’ll tell you when a chosen star will appear overhead that night.

Built by a single watchmaker over eight years, the 36mm-wide movement houses 1,521 parts and 204 jewels. Despite the mad complexity, the watch stays wearable at just 45mm wide and 15mm thick, smaller than your average Seamaster. This is a wonder of analog computational mechanics. Just before you think of getting it gifted for Christmas, think twice – rumors are it’ll be quite pricey.

Five-minute(ish) Beanie Is The Fastest We’ve Seen Yet

Yes, you read that right– not benchy, but beanie, as in the hat. A toque, for those of us under the Maple Leaf. It’s not 3D printed, either, except perhaps by the loosest definition of the word: it is knit, by [Kevr102]’s motorized turbo knitter.

The turbo-knitter started life as an Addi Express King knitting machine. These circular knitting machines are typically crank-operated, functioning  with a cam that turns around to raise and lower special hooked needles that grab and knit the yarn. This particular example was not in good working order when [Kevr102] got a hold of it. Rather than a simple repair, they opted to improve on it.

A 12 volt motor with a printed gear and mount served for motorizing the machine. The original stitch counter proved a problem, so was replaced with an Arduino Nano and a hall effect sensor driving a 7-digit display. In theory, the Arduino could be interfaced with the motor controller and set to run the motor for a specific number of stitches, but in practice there’s no point as the machine needs babysat to maintain tension and avoid dropping stitches and the like. Especially, we imagine, when it runs fast enough to crank out a hat in under six minutes. Watch it go in the oddly cropped demo video embedded below.

Five minutes would still be a very respectable time for benchy, but it’s not going to get you on the SpeedBoatRace leaderboards against something like the minuteman we covered earlier.

If you prefer to take your time, this knitting machine clock might be more your fancy. We don’t see as many fiber arts hacks as perhaps we should here, so if you’re tangled up in anything interesting in that scene, please drop us a line

Continue reading “Five-minute(ish) Beanie Is The Fastest We’ve Seen Yet”

Flopped Humane “AI Pin” Gets An Experimental SDK

The Humane AI Pin was ambitious, expensive, and failed to captivate people between its launch and shutdown shortly after. While the units do contain some interesting elements like the embedded projector, it’s all locked down tight, and the cloud services that tie it all together no longer exist. The devices technically still work, they just can’t do much of anything.

The Humane AI Pin had some bold ideas, like an embedded projector. (Image credit: Humane)

Since then, developers like [Adam Gastineau] have been hard at work turning the device into an experimental development platform: PenumbraOS, which provides a means to allow “untrusted” applications to perform privileged operations.

As announced earlier this month on social media, the experimental SDK lets developers treat the pin as a mostly normal Android device, with the addition of a modular, user-facing assistant app called MABL. [Adam] stresses that this is all highly experimental and has a way to go before it is useful in a user-facing sort of way, but there is absolutely a workable architecture.

When the Humane AI Pin launched, it aimed to compete with smartphones but failed to impress much of anyone. As a result, things folded in record time. Humane’s founders took jobs at HP and buyers were left with expensive paperweights due to the highly restrictive design.

Thankfully, a load of reverse engineering has laid the path to getting some new life out of these ambitious devices. The project could sure use help from anyone willing to pitch in, so if that’s up your alley be sure to join the project; you’ll be in good company.

The bill of materials and the assembled smartwatch.

Piko, Your ESP32 Powered Fitness Buddy

Over on Hackaday.io there’s a fun and playful write-up for a fun and playful project — the Piko, an ESP32 powered smartwatch.

Our hackers [Iloke Alusala], [Lulama Lingela], and [Rafael Cardoso] teamed up to design and manufacture this wrist-worn fitness wearable. Made from an ESP32 Beetle C6 and using an attached accelerometer with simple thresholds the Piko can detect if you’re idle, walking, jogging, or sprinting; and at the same time count your steps.

Design sketches

The team 3D printed the requisite parts in PLA using the printer in their university makerspace. In addition to the ESP32 and printed parts, the bill of materials includes a 240×240 IPS TFT LCD display, a LIS331HH triple-axis accelerometer, a 200 mAh battery, and of course, a watch strap.

Demonstrating splendid attention to detail, and inspired by the aesthetic of the Tamagotchi and pixel art, the Piko mimics your current activity with a delightful array of hand-drawn animations on its display. Should you want to bring a similar charm to your own projects, all the source is available under the MIT license.

If you’re interested in smartwatch technology be sure to check out our recent articles: Smartwatches Could Flatten The Curve Of The Next Pandemic and Custom Smartwatch Makes Diabetes Monitoring Easier For Kids.

Continue reading “Piko, Your ESP32 Powered Fitness Buddy”

A Dual Mirror System For Better Cycling Safety

Rear-view mirrors are important safety tools, but [Mike Kelly] observed that cyclists (himself included) faced hurdles to using them effectively. His solution? A helmet-mounted dual-mirror system he’s calling the Mantis Mirror that looks eminently DIY-able to any motivated hacker who enjoys cycling.

One mirror for upright body positions, the other for lower positions.

Carefully placed mirrors eliminate blind spots, but a cyclist’s position changes depending on how they are riding and this means mirrors aren’t a simple solution. Mirrors that are aligned just right when one is upright become useless once a cyclist bends down. On top of that, road vibrations have a habit of knocking even the most tightly-cinched mirror out of alignment.

[Mike]’s solution was to attach two small mirrors on a short extension, anchored to a cyclist’s helmet. The bottom mirror provides a solid rear view from an upright position, and the top mirror lets one see backward when in low positions.

[Mike] was delighted with his results, and got enough interest from others that he’s considering a crowdfunding campaign to turn it into a product. In the meantime, we’d love to hear about it if you decide to tinker up your own version.

You can learn all about the Mantis Mirror in the video below, and if you want to see the device itself a bit clearer, you can see that in some local news coverage.

Continue reading “A Dual Mirror System For Better Cycling Safety”