Creators demonstrating their Jedi Watch

Walkie Talkies, Jedi Style: Building A Communicator

Playing Star Wars Outlaws sparked an idea with [3DSage]: why not recreate the game’s wrist communicator as a functioning gadget? Inspired by the relatively simplistic design, he and his friend Ben set out to build their own device to take to Galaxy’s Edge in Disneyland. Armed with an arsenal of tools—3D printers, CNC machines, and soldering irons—he aimed to turn imagination into reality.

After ordering multiple walkie-talkies, they meticulously tested each one for audio quality, circuit board size, and compatibility with custom components. The ‘world’s tiniest walkie-talkie’ had potential but demanded creative modifications, including disassembling and resoldering components. They crafted their own circuit board and designed a 3D printed housing to fit both electronics and style. For the finishing touch, they weathered the device with paints and even glow-in-the-dark accents, making it authentic to the Star Wars universe. Even Chewbacca himself gave one a thumbs-up!

Weathering goes a long way towards creating a convincing prop — it can turn a bundle of pipes and some foam blocks into a movie-ready WWII machine gun.

Continue reading “Walkie Talkies, Jedi Style: Building A Communicator”

Hack On Self: How’d My Day Go?

Humans are well overdue for a technological revolution – not a profit-driven one like we’re having now, a human-centric one. Sci-fi is wonderful for having your brain run wild. Over the last century, we’ve had writers try and imagine what world would’ve had looked like if a new technology were to address different aspects of human condition, or, work to undercut us all in yet unseen ways, for a change.

Quite a few leading HaD projects have clear sci-fi inspiration, too, and same goes for a large number of Hackaday Prize entries. Over here, we live for fantasy made reality through skill, wit, and insights.

Ever got a sci-fi-esque dream that you’ve tried to implement with modern-day tech, only to fail because something fundamental was missing about how your phone/laptop/smartwatch functions? You’re not alone here, for sure – this describes a large chunk of my tech journey. In real life, you work with audience-tailored devices, the few fun usecases pre-cooked into the hardware-firmware blob.

Still, how much can you build on top of a consumer device? Alternative OSes that liberate you from the trend of enshittification, for instance, that one’s brilliant and a lifeline for preserving one’s sanity. Alternative platforms that bring a reprieve from a modern combative and ad-filled social media environment, sure. Still, feels limited

How about diary keeping? Personal diaries are really rad, aren’t they? Surely, that one’s a low-hanging fruit? Continue reading “Hack On Self: How’d My Day Go?”

ATTiny NFC Thermometer keychain with keys

Tiny NFC-Powered Keychain Thermometer

What if your keychain could tell you the temperature, all while staying battery-free? That’s the essence of this innovative keychain ‘NFC_temp’ by [bjorn]. This nifty gadget harnesses energy from an NFC field—like the one created by your smartphone—to power itself just long enough to take a precise temperature reading. Using components like an ATTiny1626 microcontroller, a TMP117 thermometer, and an RF430CL330H NFC IC, NFC_temp cleverly stores harvested power in a capacitor to function autonomously.

The most impressive part? This palm-sized device (18×40 mm) uses a self-designed 13.56 MHz antenna to draw energy from NFC readers. The temperature is then displayed on the reader, with an impressive accuracy of ±0.1 °C. Creator [bjorn] even shared challenges, like switching from an analog sensor due to voltage instability, which ultimately led to his choice of the TMP117. Android phones work best with the tag, while iOS devices require a bit more angling for reliable detection.

Projects like NFC_temp underscore the creativity within open source. It’s a brilliant nod to the future of passive, wireless, energy-efficient designs. Since many of us will all be spending a lot of time around the Christmas tree this month, why not fit it in a bauble?

Bioelectronic implants with size reference

Batteries Not Included: Navigating The Implants Of Tomorrow

Tinkerers and tech enthusiasts, brace yourselves: the frontier of biohacking has just expanded. Picture implantable medical devices that don’t need batteries—no more surgeries for replacements or bulky contraptions. Though not all new (see below), ChemistryWorld recently shed new light on these innovations. It’s as exciting as it is unnerving; we, as hackers, know too well that tech and biology blend a fine ethical line. Realising our bodies can be hacked both tickles our excitement and unsettlement, posing deeper questions about human-machine integration.

Since the first pacemaker hit the scene in 1958, powered by rechargeable nickel-cadmium batteries and induction coils, progress has been steady but bound by battery limitations. Now, researchers like Jacob Robinson from Rice University are flipping the script, moving to designs that harvest energy from within. Whether through mechanical heartbeats or lung inflation, these implants are shifting to a network of energy-harvesting nodes.

From triboelectric nanogenerators made of flexible, biodegradable materials to piezoelectric devices tapping body motion is quite a leap. John Rogers at Northwestern University points out that the real challenge is balancing power extraction without harming the body’s natural function. Energy isn’t free-flowing; overharvesting could strain or damage organs. A topic we also addressed in April of this year.

As we edge toward battery-free implants, these breakthroughs could redefine biomedical tech. A good start on diving into this paradigm shift and past innovations is this article from 2023. It’ll get you on track of some prior innovations in this field. Happy tinkering, and: stay critical! For we hackers know that there’s an alternative use for everything!

Close-up of a woman's neck with a haptic patch

Hacking Haptics: The 19-Sensor Patch Bringing Touch To Life

On November 6th, Northwestern University introduced a groundbreaking leap in haptic technology, and it’s worth every bit of attention now, even two weeks later. Full details are in their original article. This innovation brings tactile feedback into the future with a hexagonal matrix of 19 mini actuators embedded in a flexible silicone mesh. It’s the stuff of dreams for hackers and tinkerers looking for the next big thing in wearables.

What makes this patch truly cutting-edge? First, it offers multi-dimensional feedback: pressure, vibration, and twisting sensations—imagine a wearable that can nudge or twist your skin instead of just buzzing. Unlike the simple, one-note “buzzers” of old devices, this setup adds depth and realism to interactions. For those in the VR community or anyone keen on building sensory experiences, this is a game changer.

But the real kicker is its energy management. The patch incorporates a ‘bistable’ mechanism, meaning it stays in two stable positions without continuous power, saving energy by recycling elastic energy stored in the skin. Think of it like a rubber band that snaps back and releases stored energy during operation. The result? Longer battery life and efficient power usage—perfect for tinkering with extended use cases.

And it’s not all fun and games (though VR fans should rejoice). This patch turns sensory substitution into practical tech for the visually impaired, using LiDAR data and Bluetooth to transmit surroundings into tactile feedback. It’s like a white cane but integrated with data-rich, spatial awareness feedback—a boost for accessibility.

Fancy more stories like this? Earlier this year, we wrote about these lightweight haptic gloves—for those who notice, featuring a similar hexagonal array of 19 sensors—a pattern for success? You can read the original article on TechXplore here.

Spotted At Supercon: Glowtape Wearable Display

We’re big fans of unusual timepieces here at Hackaday, so it didn’t take long before somebody called our attention to the gloriously luminescent watch that [Henner Zeller] was wearing at this year’s Supercon.

He calls it the Glowtape, and it uses a dense array of UV LEDs and a long strip of glow-in-the-dark material to display the time and date, as well as images and long strings of text written out horizontally to create an impromptu banner. It looked phenomenal in person, with the energized areas on the tape glowing brightly during the evening festivities in the alleyway.

Continue reading “Spotted At Supercon: Glowtape Wearable Display”

A side view of an Asian woman with brown hair. She has a faint smile and is wearing an earring that looks somewhat like a large copper snowflake. Near the ear hole is a small PCB with a blinking LED. To the right of the image is the text "LED Earring, Recieved power 50 µW"

Power-Over-Skin Makes Powering Wearables Easier

The ever-shrinking size of electronics and sensors has allowed wearables to help us quantify more and more about ourselves in smaller and smaller packages, but one major constraint is the size of the battery you can fit inside. What if you could remotely power a wearable device instead?

Researchers at Carnegie Mellon University were able to develop a power transmitter that lets power flow over human skin to remote devices over distances as far a head-to-toe. The human body can efficiently transmit 40 MHz RF energy along the skin and keeps this energy confined around the body and through clothing, as the effect is capacitive.

The researchers were able to develop several proof-of-concept devices including “a Bluetooth
ring with a joystick, a stick-and-forget medical patch which logs data, and a sun-exposure patch with a screen — demonstrating user input, displays, sensing, and wireless communication.” As the researchers state in the paper, this could open up some really interesting new wearable applications that weren’t possible previously because of power constraints.

If you’re ready to dive into the world of wearables, how about this hackable smart ring or a wearable that rides rails?

Continue reading “Power-Over-Skin Makes Powering Wearables Easier”