HDMI Extender Reverse Engineered

[danman] has been playing around with various HDMI video streaming options, and he’s hit on a great low-cost solution. A $40 “HDMI extender” turns out to actually be an HDMI-to-RTP converter under the hood.

He’d done work previously on a similar extender that turned out to use a quirky method to send the video, which he naturally reversed and made to do his bidding. But non-standard formats are a pain. So when he was given a newer version of the same device, and started peeking into the packets with Wireshark, he was pleasantly surprised to find that the output was just MPEG-encoded video over RTP. No hacking necessary.

Until now, streaming video over an IP network from an arbitrary HDMI output has been tricky, [danman] has been more than a little obsessed with getting it working on the cheap. In addition to the previous version of this extender, he also managed to get a stream out of a rooted Android set-top box. That costs a bit more, but can also record at the same time, should you need to.

None of this solves the HDMI HDCP encryption problem, though. You’re on your own for that one.

(Those of you Wireshark wizards out there will note that we just swiped the headline image from the previous version of the project. There were no good images for this one. Sorry about that.)

Continuous Delivery For Your ESP8266

There’s nothing to be ashamed of. It’s a problem we all have. You change your code a lot — you can’t help it, you just need to tweak one last little bit. And then you have to go downstairs, fetch your ESP8266 module, plug it in to your computer, flash the new firmware in, and then run back down and re-install your wine-cellar temperature monitor. If only there were a way to continuously update your ESP8266 over the air, pulling new code down from your GitHub repository, automatically running your test suite on it, and then pushing it off to the ESP.

OK, it’s ridiculous overkill, but [squix] strung together a bunch of open-source continuous integration tools and made them work with the ESP8266. A simple PHP script connects the ESP to the rest of the web infrastructure.

[squix] says the word “security” in the same way that gin aficionados whisper “vermouth” over their Martinis. Which is to say, there is none. But for a home solution, or if you want to play around with continuous development, it’s a good start.

And this is a cool project because it makes use of the ESP8266 OTA (over-the-air) programming library to push the code across. And we do hate having to run around the house to update firmware.

So check it out if you want to push code to your ESP8266s without physically going to fetch them, or if you want to integrate your web development with your home deployment.

Poetic SSIDs

Artists see the same world that the rest of us do. They just see it from a little bit off to the left. Where you see picking an ESSID for your router as being a hassle, or an opportunity to insult your neighbors, [Dmitry], alias [::vtol::] sees a poetry-delivery mechanism.

Based on ESP8266 units, each “poet” has a battery and a switch. Turn it on and it changes its SSID once every ten seconds, feeding everyone who’s listening the next line of a poem. You can’t connect to the network, but you can occasionally hit refresh on your WiFi scanner and read along.

Since they’re so cheap to build, [::vtol::] sees them almost as if they were poetry-throwies. You could easily afford to leave a few around the city, guerilla-style, broadcasting your (slow) message one SSID at a time. We love the video clips (inlined below) of him riding the subway with the device on.

Continue reading “Poetic SSIDs”

Minimal MQTT: Power And Privacy

In this installment of Minimal MQTT, I’m going to cover two loose ends: one on the sensor node side, and one on the MQTT server side. Specifically, I’ll tackle the NodeMCU’s sleep mode to reduce power and step you through bridging MQTT servers to get your data securely out of your home server and into “the cloud”, which is really just other people’s servers.

If you’re just stepping into this series now, you should really check out the other three posts, where I set up a server, then build up some sensor nodes, and then flesh-out a few ways to control everything from your phone or the web. That’s the coolest material, anyway. This last installment just refines what we’ve built on. Let’s go!

Continue reading “Minimal MQTT: Power And Privacy”

Fixing The Terrible Range Of Your Cheap NRF24L01+ PA/LNA Module

nRF24L01+ PA/LNA module specs look great on paper. Wireless communication up to 1000m in a small package readily available from a variety of cheap sources in China? The hard work of software connectivity already done by a variety of open source projects? Sounds great! But if you mashed BUY and are getting maybe 1% of that range, don’t worry because thanks to these clear directions, they can be fixed.

Continue reading “Fixing The Terrible Range Of Your Cheap NRF24L01+ PA/LNA Module”

Identify Your Devices By Their Unintentional Radiation

RFID was supposed to revolutionize asset tracking, replacing the barcode everywhere. Or at least that was the prediction once tags got under five cents apiece. They still cost seven to fifteen cents, even in bulk, and the barcode is still sitting pretty. [Chouchang (Jack) Yang] and [Alanson Sample] of Disney Research hope to change that.

Instead of tagging every electronic device, they use whatever electromagnetic emissions the device currently produces when it’s powered up. What’s surprising is not that they can tell an iPhone from a toy lightsaber, but that they can tell the toy lightsabers apart. But apparently there’s enough manufacturing and tolerance differences from piece to piece that they appear unique most of the time.

The paper (PDF) goes through the details and procedure. The coolest bit? The sensor they use is an RTL-SDR unit with the radio-mixer front end removed and replaced with a simple transformer. This lets them feed baseband (tuning from 0 to 28.8 MHz) straight into the DAC ADC and on to the computer which does the heavy math. Sawing off the frontend of a TV tuner is a hack, for those of you out there with empty bingo cards.

If you like statistics, you’ll want to read the paper for details about how they exactly do the classification of objects, but the overview is that they first start by figuring out what type of device they’re “hearing” and then focusing on which particular one it is. The measure that they use ends up being essentially a normalized correlation.

While we’re not sure how well this will scale to thousands of devices, they get remarkably good results (around 95%) for picking one device out of five. The method won’t be robust to overclocking or underclocking of the device’s CPU, so we’re concerned about temperature and battery-voltage effects. But it’s a novel idea, and one that’s ripe for the hacker-rebuild. And for the price of an RTL-SDR, and with no additional per-tag outlay as with an RFID system, it’s pretty neat.

Thanks [Static] for the tip! Via Engadget.

Networked Solar Birdhouses Deep In The Woods

[Oitzu] in Germany wrote in to let us know about a series of short but very informative blog posts in which he describes building a series of solar-powered, networked birdhouses with the purpose of spying on the life that goes on within them. He made just one at first, then expanded to a small network of them. They work wonderfully, and [Oitzu]’s documentation will be a big help to anyone looking to implement any of the same elements – which include a Raspberry Pi in one unit as a main gateway, multiple remote units in other birdhouses taking pictures and sending those to the Pi over an nRF24L01+ based radio network, and having the Pi manage uploading those images using access to the mobile network. All with solar power.

Continue reading “Networked Solar Birdhouses Deep In The Woods”