Military Surplus Repurposed for High Energy Physics

Performing high-energy physics experiments can get very expensive, a fact that attracts debate on public funding for scientific research. But the reality is that scientists often work very hard to stretch their funding as far as they can. This is why we need informative and entertaining stories like Gizmodo’s How Physicists Recycled WWII Ships and Artillery to Unlock the Mysteries of the Universe.

The military have specific demands on components for their equipment. Hackers are well aware MIL-SPEC parts typically command higher prices. That quality is useful beyond their military service, which lead to how CERN obtained large quantities of a specific type of brass from obsolete Russian naval ordnance.

The remainder of the article shared many anecdotes around Fermilab’s use of armor plate from decommissioned US Navy warships. They obtained a mind-boggling amount – thousands of tons – just for the cost of transport. Dropping the cost of high quality steel to “only” $53 per ton (1975 dollars, ~$250 today) and far more economical than buying new. Not all of the steel acquired by Fermilab went to science experiments, though. They also put a little bit towards sculptures on the Fermilab campus. (One of the few contexts where 21 tons of steel can be considered “a little bit”.)

Continue reading “Military Surplus Repurposed for High Energy Physics”

Fixing the Terrible Range of your Cheap NRF24L01+ PA/LNA Module

nRF24L01+ PA/LNA module specs look great on paper. Wireless communication up to 1000m in a small package readily available from a variety of cheap sources in China? The hard work of software connectivity already done by a variety of open source projects? Sounds great! But if you mashed BUY and are getting maybe 1% of that range, don’t worry because thanks to these clear directions, they can be fixed.

Continue reading “Fixing the Terrible Range of your Cheap NRF24L01+ PA/LNA Module”

DIY RFID shielded wallet keeps data thieves at bay


[Serge] was in search of a new wallet, but he was concerned about ne’er do wells with RFID readers stealing his data. He could have gone out to the store and plunked down $20-$30 for a shielded walled, but where’s the fun in that? Instead, he decided to make his own.

Using Kevlar-Nomex fabric, he laid out the general structure for his wallet. This ultra-strong fabric has a breaking strength of 500lbs, but blocking RF isn’t exactly its forte. To provide some electromagnetic shielding, [Serge] added a nice uniform layer of silver epoxy to the Kevlar, which carries an added bonus of strengthening the material. He fired up the sewing machine, adding a nylon strip to the exterior of the wallet for reinforcement, then he worked on forming the bill pouch and card holders.

The final result is a plain yet incredibly rugged wallet that’s sure to keep his various RFID-enabled cards safe. We really dig how unassuming the wallet is – no flash, all function. Nice job, we’ll take one!