A photo of the MMD-1 on the workbench.

Restoring The E&L MMD-1 Mini-Micro Designer Single-Board Computer From 1977

Over on YouTube [CuriousMarc] and [TubeTimeUS] team up for a multi-part series E&L MMD-1 Mini-Micro Designer Restoration.

The E&L MMD-1 is a microcomputer trainer and breadboard for the Intel 8080. It’s the first ever single-board computer. What’s more, they mention in the video that E&L actually invented the breadboard with the middle trench for the ICs which is so familiar to us today; their US patent 228,136 was issued in August 1973.

The MMD-1 trainer has support circuits providing control logic, clock, bus drivers, voltage regulator, memory decoder, memory, I/O decoder, keyboard encoder, three 8-bit ports, an octal keyboard, and other support interconnects. They discuss in the video the Intel 1702 which is widely accepted as the first commercially available EPROM, dating back to 1971.

Continue reading “Restoring The E&L MMD-1 Mini-Micro Designer Single-Board Computer From 1977”

Recreating A Homebrew Game System From 1987

We often take for granted how easy it is to get information in today’s modern, Internet-connected world. Especially around electronics projects, datasheets are generally a few clicks away, as are instructions for building almost anything. Not so in the late 80s where ordering physical catalogs of chips and their datasheets was generally required.

Mastering this landscape took a different skillset and far more determination than today, which is what makes the fact that a Japanese electronics hobbyist built a complete homebrew video game system from scratch in 1987 all the more impressive.[Alex] recently discovered this project and produced a replica of it with a few modern touches.

Continue reading “Recreating A Homebrew Game System From 1987”

Hackaday Links Column Banner

Hackaday Links: October 19, 2025

After a quiet week in the news cycle, surveillance concern Flock jumped right back in with both feet, announcing a strategic partnership with Amazon’s Ring to integrate that company’s network of doorbell cameras into one all-seeing digital panopticon. Previously, we’d covered both Flock’s “UAVs as a service” model for combating retail theft from above, as well as the somewhat grassroots effort to fight back at the company’s wide-ranging network of license plate reader cameras. The Ring deal is not quite as “in your face” as drones chasing shoplifters, but it’s perhaps a bit more alarming, as it gives U.S. law enforcement agencies easy access to the Ring Community Request program directly through the Flock software that they (probably) already use.

Continue reading “Hackaday Links: October 19, 2025”

Site Of Secret 1950s Cold War Iceworm Project Rediscovered

The overall theme of the early part of the Cold War was that of subterfuge — with scientific missions often providing excellent cover for placing missiles right on the USSR’s doorstep. Recently NASA rediscovered Camp Century, while testing a airplane-based synthetic aperture radar instrument (UAVSAR) over Greenland. Although established on the surface in 1959 as a polar research site, and actually producing good science from e.g. ice core samples, beneath this benign surface was the secretive Project Iceworm.

By 1967 the base was forced to be abandoned due to shifting ice caps, which would eventually bury the site under over 30 meters of ice. Before that, the scientists would test out the PM-2A small modular reactor. It not only provided 2 MW of electrical power and heat to the base, but was itself subjected to various experiments. Alongside this public face, Project Iceworm sought to set up a network of mobile nuclear missile launch sites for Minuteman missiles. These would be located below the ice sheet, capable of surviving a first strike scenario by the USSR. A lack of Danish permission, among other complications, led to the project eventually being abandoned.

It was this base that popped up during the NASA scan of the ice bed. Although it was thought that the crushed remains would be safely entombed, it’s estimated that by the year 2100 global warming will have led to the site being exposed again, including the thousands of liters of diesel and tons of hazardous waste that were left behind back in 1967. The positive news here is probably that with this SAR instrument we can keep much better tabs on the condition of the site as the ice cap continues to grind it into a fine paste.


Top image: Camp Century in happier times. (Source: US Army, Wikimedia)

The Great Northeast Blackout Of 1965

At 5:20 PM on November 9, 1965, the Tuesday rush hour was in full bloom outside the studios of WABC in Manhattan’s Upper West Side. The drive-time DJ was Big Dan Ingram, who had just dropped the needle on Jonathan King’s “Everyone’s Gone to the Moon.” To Dan’s trained ear, something was off about the sound, like the turntable speed was off — sometimes running at the usual speed, sometimes running slow. But being a pro, he carried on with his show, injecting practiced patter between ad reads and Top 40 songs, cracking a few jokes about the sound quality along the way.

Within a few minutes, with the studio cart machines now suffering a similar fate and the lights in the studio flickering, it became obvious that something was wrong. Big Dan and the rest of New York City were about to learn that they were on the tail end of a cascading wave of power outages that started minutes before at Niagara Falls before sweeping south and east. The warbling turntable and cartridge machines were just a leading indicator of what was to come, their synchronous motors keeping time with the ever-widening gyrations in power line frequency as grid operators scattered across six states and one Canadian province fought to keep the lights on.

They would fail, of course, with the result being 30 million people over 80,000 square miles (207,000 km2) plunged into darkness. The Great Northeast Blackout of 1965 was underway, and when it wrapped up a mere thirteen hours later, it left plenty of lessons about how to engineer a safe and reliable grid, lessons that still echo through the power engineering community 60 years later.

Continue reading “The Great Northeast Blackout Of 1965”

BASICODE: A Bit Like Java, But From The 1980s

Those of us ancient enough to remember the time, or even having grown up during the heyday of the 8-bit home computer, may recall the pain of trying to make your latest creation work on another brand of computer. They all spoke some variant of BASIC, yet were wildly incompatible with each other regardless. BASICODE was a neat solution to this, acting as an early compatibility standard and abstraction layer. It was essentially a standardized BASIC subset with a few extra routines specialized per platform.

But that’s only part of the story. The BASICODE standard program was invented by Dutch radio engineer Hessel de Vries, who worked for the Dutch national radio broadcaster Nederlandse Omroep Stichting (NOS). It was designed to be broadcast over FM radio! The idea of standardization and free national deployment was brilliant and lasted until 1992, when corporate changes and technological advancements ultimately led to its decline.

Continue reading “BASICODE: A Bit Like Java, But From The 1980s”

[Anthony] holding the EE8 kit

Making A 2-Transistor AM Radio With A Philips Electronic Engineer EE8 Kit From 1966

Back in 1966, a suitable toy for a geeky kid was a radio kit. You could find simple crystal radio sets or some more advanced ones. But some lucky kids got the Philips Electronic Engineer EE8 Kit on Christmas morning. [Anthony Francis-Jones] shows us how to build a 2-transistor AM radio from a Philips Electronic Engineer EE8 Kit.

According to [The Radar Room], the kit wasn’t just an AM radio. It had multiple circuits to make (one at a time, of course), ranging from a code oscillator to a “wetness detector.”

The kit came with a breadboard and some overlays for the various circuits, along with the required components. It relied on springs, friction, and gravity to hold most of the components to the breadboard. A little wire is used, but mostly the components are connected to each other with their leads and spring terminals.

Continue reading “Making A 2-Transistor AM Radio With A Philips Electronic Engineer EE8 Kit From 1966”