Small waterways give life in the form of drinking and irrigation water, but can also be very destructive when flooding occurs. In the US, monitoring of these waterways is done by mainly by the USGS, with accurate but expensive monitoring stations. This means that there is a limit to how many monitoring stations can be deployed. In an effort to come up with a more cost-efficient monitoring solution, [Rohan Menon] and [Ian Vernooy] created Aquametric, a simple water level, temperature and conductivity measuring station.
The device is built around a Particle Electron that features a STM32 microcontroller and a 3G modem. An automotive ultrasonic sensors measures water level, a thermistor measures temperature and a pair of parallel aluminum plates are used to measure conductivity. All the data from the prototype is output to a live dashboard. The biggest challenges for the system came with field deployment.
The great outdoors can be rather merciless with our ideas and electronic devices. [Rohan] and [Ian] did some tests with LoRa, but quickly found that the terrain severely limited the effective range. Power was another challenge, first testing with a solar panel and lithium battery. This proved unreliable especially at temperatures near freezing, so they decided to use 18 AA batteries instead and optimized power usage.
The mounting system is still an ongoing challenge. A metal pole driven into the riverbed at a wider part ended up bent (probably from ice sheets) and covered in debris to the point that it affected water level readings. They then moved to a narrower and shallower section in the hopes of avoiding debris, but the rocky bottom prevented them from effectively driving in a pole. So the mounted the pole on a steel plate which was then packet with rock to keep it in place. This too failed when it tipped over from rising water levels, submerging the entire sensor unit. Surprisingly it survived with only a little moisture getting inside.
For the 2020 Hackaday Prize, Field Ready and Conservation X Labs have issued challenges that need require some careful consideration and testing to build things that can survive the real world. So go forth and hack!