Resin printing

Resin Printing Hack Chat

Join us on Wednesday, October 13 at noon Pacific for the Resin Printing Hack Chat with Andrew Sink!

At its heart, 3D printing is such a simple idea that it’s a wonder nobody thought of it sooner. Granted, fused deposition modeling does go back to the 80s, and the relatively recent explosion in cheap, mass-market FDM printers has more to do with cheap components than anything else. But really, at the end of the day, commodity 3D printers are really not much more than glorified hot-glue guns, and while they’re still a foundational technology of the maker movement, they’ve gotten a bit dull.

So it’s natural that we in this community would look for other ways to push the 3D printing envelope, and stereolithography has become the new hotness. And with good reason — messy though it may be, the ability to gradually pull a model from a tank of goo by selective photopolymerization looks magical, and the fine level of detail resin printers are capable of is just as enchanting. So too are the prices of resin printers, which are quickly becoming competitive with commodity FDM printers.

If there’s a resin printer in your future, then you’ll want to swing by the Hack Chat when Andrew Sink visits us. Andrew has been doing a lot of 3D printing stuff in general, and resin printing in particular, over on his YouTube channel lately. We’ve featured a couple of his tricks and hacks for getting the most from a resin printer, and he’ll be sharing some of what he has learned lately. Join us as we discuss the ins and outs of resin printing, what’s involved in taking the dive, and the pros and cons of SLA versus FDM.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, October 13 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

How Good Are The Head(amame) 3D Printed Headphones?

3D printing lets the average maker tackle building anything their heart desires, really, and many have taken to using the technology for audio projects. Printable speaker and headphone designs abound. The Head(amame) headphones from [Vector Finesse] are a design that combines 3D printed parts with hi-fi grade components to create a high-end listening experience. [Angus] of Maker’s Muse decided to try printing a set at home and has shared his thoughts on the hardware.

Printing the parts has to be done carefully, with things like the infill settings crucial to the eventual sound quality of the final product. Using a properly equipped slicer like CURA is key to getting the parts printed properly so the finer settings can be appropriately controlled. The recommendation is to print the pieces in PETG, which [Angus] notes can be difficult to work with, and several prints were required to get all the parts made correctly.

Assembly is straightforward enough with kits available with all the fasteners and electronic parts included. Subjectively, [Angus] found the sound quality to be impressive, with plenty of full bass and clearly defined highs. Overall, it’s a positive review in the areas of comfort and sound quality.

Detractors will note that the kit of parts costs over $100 USD alone, and that after hours of work and printing, the user is left with a set of headphones made out of obviously 3D-printed parts. It seems destined to be a product aimed at the 3D printing fanbase. If you want a set of headphones you can customise endlessly in form and color, these are ideal. If you prefer the fit and finish of a consumer-grade product, they may not be for you.

It’s a good look at a design sure to appeal to a wide set of makers out there. We’ve seen 3D printing put to good use in this realm before, too. Video after the break.

Continue reading “How Good Are The Head(amame) 3D Printed Headphones?”

3D Printed Research Robotics Platform Runs Remotely

The Open Dynamic Robot Initiative Group is a collaboration between five robotics-oriented research groups, based in three countries, with the aim to build an Open Source robotics platform based around the torque-control method. Leveraging 3D printing, a few custom PCBs, and off-the-shelf parts, there is a low-barrier to entry and much lower cost compared to similar robots.

The eagle-eyed will note that this is only a development platform, and all of the higher level control is off-machine, hosted by a separate PC. What’s interesting here, is just how low-level the robot actually is. The motion hardware is purely a few BLDC motors driven by field-orientated control (FOC) driver units, a wireless controller and some batteries. The FOC method enables very efficient motor commutation, giving excellent efficiency and maximum torque.  A delve into the maths of how this method operates will be an eye opener for the uninitiated. Optical encoders attached to the motors give positional feedback for the control loop.

It is this control loop that’s kinda weird, in that operates over Wi-Fi! Normally one would do all the position, torque and speed sensing locally within the leg unit, with local control loops, as well as running all the limb kinematics and motion planning. This would need some considerable local processing grunt, which can make development more difficult.

This project side-steps this, by first leveraging the ESPNOW protocol, initially aimed at the ESP8266 and friends. By patching Ubuntu Linux, and enabling preemptive multitasking for real-time scheduling, as well as carefully selecting Wi-Fi drivers, it was possible to get raw packets out to robot in about 1 ms, enabling control loop bandwidths of around 1 Khz. And, that, was fast enough to run at least sixteen motors in parallel.

Continue reading “3D Printed Research Robotics Platform Runs Remotely”

Columbia Decides 3D Printed Food Tastes Like Chicken

Researchers at Columbia have used multi-wavelength lasers to cook 3D-printed chicken. Apparently, it tastes like chicken. We were not overly surprised that 3D printed chicken protein cooked up to taste like chicken, but, then again, you have to do the science.

While additive manufacturing is the latest buzzword for all kinds of manufacturing, there’s also been a variety of attempts to 3D print food. We’ve seen pizza printers and fake steak printers, too. It makes sense that you don’t want to print raw food — the finished product needs to be cooked. You can see several videos about the process, below.

Continue reading “Columbia Decides 3D Printed Food Tastes Like Chicken”

a variety of enclosure options

The Many Ways To Solve Your Enclosure Problems

Most projects around here involve some sort of electronics, and some sort of box to put them in. The same is true of pretty much all commercially available electronic products as well.

Despite that, selecting an enclosure is far from a solved problem. For simple electronics it’s entirely possible to spend more time getting the case just right than working on the circuit itself. But most of the time we need to avoid getting bogged down in what exactly will house our hardware.

The array of options available for your housing is vast, and while many people default to a 3D printer, there are frequently better choices. I’ve been around the block on this issue countless times and wanted to share the options as I see them, and help you decide which is right for you. Let’s talk about enclosures!

Continue reading “The Many Ways To Solve Your Enclosure Problems”

3D Printed Hat Blasts The Rain Away

Some ideas are so bad that we just try them anyway, at least that seems to be [Ivan Miranda]’s philosophy. No stranger to just totally ignoring the general consensus on what you can (or at least should) or can’t make with a 3D printer, and just getting on with it, [Ivan] may have gone a little too far this time. Since umbrellas are, well, boring, why not try to keep dry with an air-curtain hat?

As you’ll see from the video, attempting to 3D print an impeller to run from a BLDC motor didn’t exactly go well. The imbalance due to imperfections in the printing process (and lack of an easy way balance it post-print) caused incredibly unpleasant (and possibly damaging) vibrations directly into his skull, not to mention the thing self-disassembling in a short time.

Not to be discouraged, he presses on regardless, substituting an electrical ducted fan (EDF), increasing the silliness-factor oh-so-little, after all as he says “I think I have a solution for all the issues — more power!”

EDFs and other kinds of ducted fans are used in many applications nowadays. Thanks to advances in rare-earth magnets enabling more powerful brushless motors, combined with cheap and accessible control systems, there has never been a better time to drop an EDF into your latest madcap idea. We have covered many ducted fan projects over the years, including this great video about how ducted fans work, which we think is well worth a watch if you’ve not already done so.

The “rain in spain, stays mainly in the plain” doesn’t actually reflect reality, as most rainfall is actually recorded in the mountainous north, rather than the central ‘plain’, But regardless, it never rains when you want it to, certainly in the Basque country where [Ivan] is based. Initial testing was done with a hose pipe, in the shop, which shows a certain dedication to the task in hand to say the least.

He does demonstrate it appearing to actually work, but we’re pretty sure there is still plenty of room for improvement. Although, maybe it’s safer to just shelve it and move on the next mad-cap idea?

Continue reading “3D Printed Hat Blasts The Rain Away”

Highly Configurable Open Source Microscope Cooked Up In FreeCAD

What do you get when you cross a day job as a Medical Histopathologist with an interest in 3D printing and programming? You get a fully-baked Open Source microscope, specifically the Portable Upgradeable Modular Affordable (or PUMA), that’s what. And this is no toy microscope. By combining a sprinkle of off-the-shelf electronics available from pretty much anywhere, a pound or two of filament, and a dash of high quality optical parts, PUMA cooks up quite possibly one of the best open source microscopy experiences we’ve ever tasted.

GitHub user [TadPath] works as a medical pathologist and clearly knows a thing or two about what makes a great instrument, so it is a genuine joy for us to see this tasty project laid out in such a complete fashion. Many a time we’ve looked into an high-profile project, only to find a pile of STL files and some hard to source special parts. But not here. This is deliberately designed to be buildable by practically anyone with access to a 3D printer and an eBay account.

The project is not currently certified for medical diagnostics use, but that is likely only a matter of money and time. The value for education and research (especially in developing nations) cannot really be overstated.

A small selection of the fixed and active aperture choices

The modularity allows a wide range of configurations from simple ambient light illumination, with a single objective, great for using out in the field without electricity, right up to a trinocular setup with TFT-based spatial light modulator enabling advanced methods such as Schlieren phase contrast (which allows visualisation of fluid flow inside a live cell, for example) and a heads-up display for making measurements from the sample. Add into the mix that PUMA is specifically designed to be quickly and easily broken down in the field, that helps busy researchers on the go, out in the sticks.

The GitHub repo has all the details you could need to build your own configuration and appropriate add-ons, everything from CAD files (FreeCAD source, so you can remix it to your heart’s content) and a detailed Bill-of-Materials for sourcing parts.

We covered fluorescence microscopy before, as well as many many other microscope related stories over the years, because quite simply, microscopes are a very important topic. Heck, this humble scribe has a binocular and a trinocular microscope on the bench next to him, and doesn’t even consider that unusual. If you’re hungry for an easily hackable, extendable and cost-effective scope, then this may be just the dish you were looking for.

Continue reading “Highly Configurable Open Source Microscope Cooked Up In FreeCAD”