Better Living Through Biomedical Engineering

We don’t often think of medicine and engineering as being related concepts, and most of the time, they aren’t. But there’s a point where medicine alone may not be enough to treat a particular ailment or injury, and it might be necessary to blend the mechanical with the biological. When a limb is lost, we don’t have the technology to regrow it, but we can apply engineering principles to build a functional facsimile that can help the patient regain lost independence and improve their quality of life.

The area where these two disciplines overlap is called biomedical engineering (BME), and it’s a field that’s seeing fantastic growth thanks to advances in 3D printing, materials science, and machine learning. It’s also a field where open source principles and DIY are making surprising inroads, as hobbyists look to put their own knowledge and experience to use by creating low-cost assistive devices — something we were honored to help facilitate over the years through the Hackaday Prize.

Continue reading “Better Living Through Biomedical Engineering”

The fully assembled RocketSwitch, with a 3D printed case on it and a USB-A connector sticking out, being held in someone's hand.

Rocket Switch – Accessibility Done With Elegance

Quite a few makers try and create devices helpful to others – today’s hack, Rocket Switch, is a lovely example of that. It’s a design by [Neil Squire] of [Makers Making Change], with a PCB that plugs onto an Adafruit Rotary Trinkey, soldering onto its exposed pads, equipping it with two headphone jacks connected to GPIOs. This is a simple design – only two headphone jacks and resistors, complete with a 3D printed case. The value is not as much in its construction, but more in what the Rocket Switch provides to its users.

This is an accessibility-enabling controller, a USB HID device which interfaces to a wide variety of headphone-jack-connectable switches. With this device, someone unable to use a computer mouse can use two tactile buttons to control their computer, either by imitating mouse clicks or by sending keypresses into accessibility software equipped a control flow for such two-switch arrangements.

Everything is open-source, and there’s an impressive amount of documentation – for 3D printing, ordering, usage, design choice explanations, and of course, a picture-peppered 15-page tutorial PDF with detailed assembly instructions for anyone who might need a Rocket Switch. Plus, [Makers Making Change] created a page where both people in need and makers with some free time can sign up to exchange these devices. It’s not the first time we see a design like this – perhaps the most famous example is Microsoft’s Xbox Adaptive Controller, something that we’ve seen a dad use to build an entertainment platform for his daughter.

Continue reading “Rocket Switch – Accessibility Done With Elegance”

Microsoft Wants You (To Help With Assistive Tech)

In college I had an exceptional piano teacher that was entirely blind. One day he noticed I had brought in my new-ish laptop, and his unexpected request — “can I look at your laptop?” — temporarily flabbergasted me. Naturally there wasn’t much he could do with it, so he gave it a once over with his fingers to understand the keyboard layout, and that was that. I still think about this experience from time to time, and the most obvious lesson is that my paradigm for using a computer didn’t map well to his abilities and disability.

The folks at Microsoft are thinking about this problem, too, and they’re doing a lot of work to make technology work for more users, like the excellent Xbox Adaptive Controller pictured above. Now, if you have some experience helping folks overcome the challenges of disability, or have a killer idea for an assistive technology solution, Microsoft is looking for projects to fund. Did you rig up a Raspberry Pi and webcam to automatically read text aloud? Maybe you pulled that old Kinect out, and are working on sign-language reader using 3D data points.

Make a pitch of your project or solid idea by the November 4th deadline, and just maybe you can get some help to make it a reality. Just make sure you come back and tell us about it! After all, some of the coolest hacks we’ve ever covered have been adaptive tech projects.

Thanks to [MauroPichiliani] for sending in this tip.

Interactive Game Board Helps Toddler Learn Colors And Shapes

Most parents would do anything to enrich their kids’ worlds and teach them what they need to know. Hacker parents often take it one step further by modifying the kid’s world to allow them to work past a disability. To wit we have an interactive game board to help a toddler learn her shapes and colors.

The toddler in question is [Becca], and her needs are special because of the progressive nature of the blindness that will result from her Usher Syndrome. [Becca] will need visual acuity testing much earlier than most toddlers, but a standard eye chart is meaningless to kids before they get their letters. This is where Lea shapes come in – a set of four shapes that are used to make visual testing a game and help practitioners assess what a child can and cannot see.

[Jake] and his wife [Beth] were advised to familiarize [Becca] with the shapes, but all she wanted to do was eat the printed sheet. In order to make the task more entertaining, [Jake] built an interactive board where brightly colored Lea shapes trigger the room lights to change to the same color as the block when it’s inserted into the correct spot on the board, as a visual reward. Reed switches, magnets, and an Arduino comprise the game logic, and the board communicates to the Philips Hue smart bulbs over an NRF24L01. The video below also shows some cool under-bed lights and a very engaged [Becca] learning her shapes and colors.

As we expected when we last covered his efforts to help [Rebecca], [Jake] has leveraged the Raspberry Pi he used as a hub for the stairwell lighting project. We’re looking forward to seeing what else he comes up with, and to see how [Becca] is thriving.

Continue reading “Interactive Game Board Helps Toddler Learn Colors And Shapes”

Shapeshifting Material For Weather Adaptive Structures

Where [Isaac Newton] had his apple (maybe), [Chao Chen] found inspiration in a pine cone for a design project that lead to a water-sensitive building material. He noticed the way some pine cones are sensitive to water, closing up tight when it rains, but opening up with dry conditions. Some dissection of a pine cone revealed [Mother Nature’s] solution – different layers that swell preferentially when exposed to moisture, similar to how a bimetallic strip flexes when heated. [Chao Chen’s] solution appears to use balsa wood and a polystyrene sheet laminated to a fabric backing to achieve the same movement – the wood swells when wet and pulls the laminate flat, but curls up when dry.

As [Chao] points out, the material is only a prototype, but it looks like a winner down the road. The possibilities for an adaptive material like this are endless. [Chao] imagines a picnic pavilion with a roof that snaps shut when it rains, and has built a working model. What about window shutters that let air and light in but close up automatically in that sudden summer storm? Self-deploying armor for your next epic Super Soaker battle? Maybe there are more serious applications that would help solve some of the big problems with water management that the world faces.

Make sure you check out the video after the break, with a more decorative application that starts out looking like an [M.C. Escher] print but ends up completely different.

Continue reading “Shapeshifting Material For Weather Adaptive Structures”

Wheelchair Hack Lets Two-year-old Explore On His Own

[Shea’s] son [Alejandro] was born with Spinal Muscular Atrophy which limits his ability to move. The ability to explore one’s environment as a toddler is really important to development so [Shea] and his wife have been looking into assistive technology. Their health insurance paid for a medical stroller when he was nine-months old and has told the family they need to wait five years for a powered wheelchair. Rather than wait, [Shea] took it upon himself to hack a wheelchair his son could control.

He found a used adult-sized motorized wheelchair on eBay for about $800. Not cheap, but way more affordable than a brand new unit. This type of chair is made to be controlled with a joystick, an option not available to his son at this point. Foot control was an option if he could figure out how to build an interface.

After unsuccessfully trying to repair a broken digital kitchen scale [Shea] was inspired to reuse the sensors as pedal inputs. [Alejandro] has limited foot strength and the sensitive strain gauges are perfect for picking it up. Above you can see the sandal-based interface he built. The two feet working together affect steering as well as forward and reverse. The pedal system is connected to the wheelchair using a Digital to Analog converter chip to stand-in for the original analog joystick. After the break we’ve embedded a video of [Alejandro] exploring the outdoors in the finished chair.

In this case it’s fortunate that [Shea] has the skills to build something like this for his son. We hope this will inspire you to donate your time an know-how to help those in your own community who are in a similar situation. This really takes the concept of The Controller Project to the next level.

Continue reading “Wheelchair Hack Lets Two-year-old Explore On His Own”

No Nonsense Guide For Patching Into A Gaming Controller

patching-into-a-gaming-controller

Here a straight-forward guide for tapping into the buttons on most gaming controllers. Why do something like this? Well there’s always the goal of conquering Mario through machine learning. But we hope this will further motivate hackers to donate their time and expertise developing specialized controllers for the disabled.

In this example a generic NES knock-off controller gets a breakout header for all of the controls. Upon close inspection of the PCB inside it’s clear that the buttons simply short out a trace to ground. By soldering a jumper between the active trace for each button and a female header the controller can still be used as normal, or can have button presses injected by a microcontroller.

The Arduino seen above simulates button presses by driving a pin low. From here you can develop larger buttons, foot pedals, or maybe even some software commands based on head movement or another adaptive technology.

Continue reading “No Nonsense Guide For Patching Into A Gaming Controller”