Not Happy with Smart Bulbs? Make Your Own

The idea of the so-called “smart bulb” sounds good; who wouldn’t want to be able to verify the porch light is on if you’re out of town for the night, or check to see if you left the bathroom lights on in your rush out the door in the morning? But in practice, it can be a nightmare. Each brand wants to push their own protocol. Even worse, it seems you can’t get anything done without signing up for three different services, each with its own application that needs to be installed on your phone. It’s a frustrating and often expensive mire to find yourself in.

[Dom Gregori] liked the Hue bulbs offered by Philips, but didn’t want to buy into the whole ecosystem of phone apps and hardware hubs they require. So he decided to create his own open source version that would do everything he wanted, without any of the seemingly unavoidable baggage of the commercial offerings. The final result is a professional looking ESP8266 controlled RGB bulb that hooks into Home Assistant via MQTT.

Looking at his Bill of Materials, it’s actually pretty amazing to see how little it really takes to pull a project like this off. Outside of the Wemos D1 Mini board, [Dom] just needed a few concentric WS2812 rings, and a USB charger small enough to fit into the base of his 3D printed enclosure.

We especially like how he handled the socket-side of the bulb, as that’s the part that would have left us scratching our heads. Rather than trying to salvage the base from an existing bulb, or come up with his own printed piece to stick in the socket, he just used a cheap and readily available light socket adapter. The solution might be a little bulky, but we like how he’s deftly avoided having to handle any AC voltages in this project.

Over the last couple years, we’ve seen more and more smart bulb related content come our way. From the ever popular teardown of a new entry into the market to the sobering realization that your light bulbs might provide the key attackers need to access your network, it’s been fascinating to see the transformation of these once simple pieces of hardware into something far more complex.

Evolution of the ESP8266 Party Button

Sometimes the best part of building something is getting to rebuild it again a little farther down the line. Don’t tell anyone, but sometimes when we start a project we don’t even know where the end is going to be. It’s a starting point, not an end destination. Who wants to do something once when you could do it twice? Maybe even three times for good measure?

Original version of the Party Button

That’s what happened when [Ryan] decided to build a wireless “party button” for his kids. Tied into his Home Assistant automation system, a smack of the button plays music throughout the house and starts changing the colors on his Philips Hue lights. His initial version worked well enough, but in the video after the break, he walks through the evolution of this one-off gadget into a general purpose IoT interface he can use for other projects.

The general idea is pretty simple, the big physical button on the top of the device resets the internal ESP8266, which is programmed to connect to his home WiFi and send a signal to his MQTT server. In the earlier versions of the button there was quite a bit of support electronics to handle converting the momentary action of the button to a “hard” power control for the ESP8266. But as the design progressed, [Ryan] realized he could put the ESP8266 to deep sleep after it sends the signal, and just use the switch to trigger a reset on the chip.

Additional improvements in the newer version of the button include switching from alkaline AA batteries to a rechargeable lithium-ion pack, and even switching over to a bare ESP8266 rather than the NodeMCU development board he was using for the first iteration.

For another take on MQTT home automation with the ESP8266, check out this automatic garage door control system. If the idea of triggering a party at the push of a button has your imagination going, we’ve seen some elaborate versions of that idea as well.

Continue reading “Evolution of the ESP8266 Party Button”

Haunting A Smart Mirror With Hue and Alexa

So, your smart mirror has been running for a while, but Halloween is coming up and you want to come up with some cool Halloween stuff to display on the mirror. If you’re looking for ideas, check out [Ben Eagan]’s cool Haunted Smart Mirror which connects the mirror via a Raspberry Pi with Amazon Alexa and Phillips Hue lighting.

[Ben] points to another of his blog pages for those readers interested in the nuances of setting up Alexa with a smart mirror, while concentrating on communication with the Hue bridge and creating the setup for a new Alexa command in this post. Dealing with the Phillips Hue API seems fairly straightforward: Get the IP address of your Hue bridge from your router and the ID of your lights from the Hue app and you’re set to send commands via HTTP. [Ben] includes a Python script to make the lights flicker, which you can modify for your own lights as you wish. Once that’s done, you’ll need to set up the intent that Alexa listens for, and then modify the AWS lambda function that sends commands to the Pi. When the command shows up in the queue on the Pi, any commands [Ben] wants to play are fired off – in this case, a video is played and the Hue lights start to flicker.

There’s no mention of security in the article, so that may be worth a little attention with Alexa and the Hue, but with Halloween coming up fast even if you haven’t built a magic mirror yet, if you’ve got Hue lights, this would be a great, quick, Halloween idea. Especially if you could combine it with your outside lights so that Trick-or-Treaters can join in on the fun. Maybe you’d prefer looking up passing planes using Alexa? Or how about getting your fish to talk?

Continue reading “Haunting A Smart Mirror With Hue and Alexa”

Interactive Game Board Helps Toddler Learn Colors and Shapes

Most parents would do anything to enrich their kids’ worlds and teach them what they need to know. Hacker parents often take it one step further by modifying the kid’s world to allow them to work past a disability. To wit we have an interactive game board to help a toddler learn her shapes and colors.

The toddler in question is [Becca], and her needs are special because of the progressive nature of the blindness that will result from her Usher Syndrome. [Becca] will need visual acuity testing much earlier than most toddlers, but a standard eye chart is meaningless to kids before they get their letters. This is where Lea shapes come in – a set of four shapes that are used to make visual testing a game and help practitioners assess what a child can and cannot see.

[Jake] and his wife [Beth] were advised to familiarize [Becca] with the shapes, but all she wanted to do was eat the printed sheet. In order to make the task more entertaining, [Jake] built an interactive board where brightly colored Lea shapes trigger the room lights to change to the same color as the block when it’s inserted into the correct spot on the board, as a visual reward. Reed switches, magnets, and an Arduino comprise the game logic, and the board communicates to the Philips Hue smart bulbs over an NRF24L01. The video below also shows some cool under-bed lights and a very engaged [Becca] learning her shapes and colors.

As we expected when we last covered his efforts to help [Rebecca], [Jake] has leveraged the Raspberry Pi he used as a hub for the stairwell lighting project. We’re looking forward to seeing what else he comes up with, and to see how [Becca] is thriving.

Continue reading “Interactive Game Board Helps Toddler Learn Colors and Shapes”

Stairwell Lights Keep Toddler with Night-Blindness Safe

A devastating diagnosis for a young child is every parent’s worst nightmare. All too often there’s nothing that can be done, but occasionally there’s a window of opportunity to make things better for the child, even if we can’t offer a cure. In that case even a simple hack, like a rapid response stairwell light to help deal with night-blindness, can make a real difference.

[Becca] isn’t yet a year old, but she and her parents carry a heavy burden. She was born with Usher Syndrome, an extremely rare genetic disease that affects hearing and vision to different degrees. In [Becca]’s case, she was born profoundly deaf and will likely lose her sight by the time she’s 10 or so. Her dad [Jake] realized that the soon-to-be-toddler was at risk due to a dark stairwell and the night-blindness that accompanies Usher, so he came up with a simple tech solution to the problem.

He chose Philips Hue LED light strips to run up the stringer of the stairs controlled by a Raspberry Pi. Originally he planned to use IFTTT for the job but the latency resulted in the light not switching on fast enough. He ended up using a simple PIR motion sensor which the Pi monitors and then uses the Hue API to control the light. This will no doubt give him a platform for future capabilities to help [Becca].

We’ve covered a few builds where parents have hacked solutions for their kids, like this custom media center for the builder’s autistic son. We suspect [Jake] has a few more tricks up his sleeve to help [Becca], and we’re looking forward to seeing how she does.

Root on the Philips Hue IoT Bridge

Building on the work of others (as is always the case!) [pepe2k] managed to get root access on the Philips Hue Bridge v2 IoT light controller. There’s nothing unusual here, really. Connect to the device over serial, interrupt the boot process, boot up open firmware, dump the existing firmware, and work the hacker magic from there.

Of course, the details are the real story. Philips had set U-Boot to boot the firmware from flash in zero seconds, not allowing [pepe2k] much time to interrupt it. So he desoldered the flash, giving him all the time in the world, and allowing him to change the boot delay. Resoldering the flash and loading up his own system let him dump the firmware.

The “hacker magic” glossed over in the intro consisted of poking around until he found a script that was called on every boot. This is how [pepe2k] gets around not knowing the root password. The script compares the hash of the typed password with an environment variable, set with the hash of the correct password. Changing that environment variable to the hash of his favorite password (“root”) made him master of the box.

And just in case you’re one of the few Hackaday readers who doesn’t understand why we do these things, besides the fact that it’s just fun, consider Philips’ (eventually retracted) clampdown on the interoperability of this very device, or Google’s red bricks. The fatal flaw of IoT devices is that they place you at the whims of companies who may decide that they’re not making enough money any more, and shut them down. Keep your hacking skills sharp.

Thanks [Jan] for the great tip!