3D-Printed Tools Make Circuit Sculpture A Little Easier

Having the tools needed to do a job is a powerful thing. Having the tools needed to make more tools for doing cool things is even better, though, and that’s where [Jiří Praus] took things with this 3D-printed jig for making his blooming tulip circuit sculpture.

If you haven’t seen [Jiří]’s tulip, check out our coverage from back when he first built it. The brass wire and tube mechanism and some clever linkages let a single servo open the Neopixel-adorned petals at a touch. But what started as a one-off romantic gesture for his wife on Valentine’s Day became something more, and what was a labor of love turned into just labor very quickly. [Jiří]’s solution, explained in the brief video below, is a 3D-printed jig that holds all the wires that form the tulip petals locked into position. The wire that defines the spine of the petal goes into a groove and gets held down with removable clips. The edge wires are held by rotating clips, and the veins of the petals just lay in place in grooves. The area around each joint is hollowed out so [Jiří] can solder easily without melting the plastic jig.

The best part comes at the end, when it’s time to release the completed petal. For that, a tool with pins that looks a little like a hedgehog is inserted from below, and pins that fit into each joint’s hole pop the finished petal off. We can see how this tool would greatly increase the production of his tulips, so if that’s his goal, he’s on track.

If you’re into circuit sculpture, you’re in the right place. Check out [Mohit Bhoite]’s Supercon talk on the subject, or some more of the tools [Jiří] has come up with to improve his art.

Continue reading “3D-Printed Tools Make Circuit Sculpture A Little Easier”

Plot And Visualise Brain Data In An Artwork

One of the most interesting streams through which we receive new projects to write about here at Hackaday comes from the intersection between technologists and artists. Those artists who straddle both disciplines bring creativity that those of us without their backgrounds can only dream of. The artist [Rosa Francesca] produced a piece called Cinematica, in which she monitored her brain waves with an EEG and from them produced on-paper visualizations with a pen plotter.

The hardware in use is an Interaxon Muse EEG headband read through the Muse Monitor app, and some code to drive an Evil Mad Scientist AxiDraw V3 plotter via its serial port. The write-up goes in some depth into the different types of brain waves, explaining her choice of monitoring gamma and theta waves for her source data. The result is a series of repeating shapes that vary with the brain waves of the wearer, creating drawings that are both pleasing and unique.

If you’re interested by the Muse headset used in this artwork, you might find a teardown we covered a few years ago to be of interest. And if you’re tempted by the plotter, you can always try making your own.

Thanks, @tanurai for the tip!

The (UV) Writing’s On The Wall

[Michael Karliner]’s Belshazzar, named for the Biblical character upon whose wall the writing appeared, is a unique light painting machine, that tracks an array of UV LEDs across a glow-in-the-dark background to paint transient dot-matrix letters in light. It was one of many cyberpunk-themed art pieces in Null Sector at the 2018 Electromagnetic Field hacker camp this summer.

The row of LEDs hangs down from a carriage that traverses a tubular rail, and is edged forward by means of a stepper motor driving a roller. This arrangement delivers the benefit that it can be scaled for displays of any length. The LEDs are driven from an Arduino via a Texas Instruments TLC5940 PWM driver ship.The result can be seen in the video below the break, and those who saw it at EMF may remember it tracing suitably dystopian phrases.

Continue reading “The (UV) Writing’s On The Wall”

Raspberry Pi Art Frame Using OpenFrame

Digital picture frames were a fad awhile back, and you can still pick them up at the local big box store. [Ishac Bertran] and [Jonathan Wohl] decided to go open source with digital frames and create the openframe project. The open-source project uses a Raspberry Pi with WiFi and either an HDMI monitor or a monitor that the Pi can drive (e.g., a VGA with an HDMI adapter).

You are probably thinking: Why not just let the Pi display images? The benefit of openframe is you can remotely manage your frames at the openframe.io site. You can push images, websites (like Hackaday.com) or shaders out to any of your frames. You can also draw on public streams of artwork posted by other users.

Continue reading “Raspberry Pi Art Frame Using OpenFrame”

Raindrops On An Oscilloscope

Something very beautiful appeared in our feed this evening, something that has to be shared. [Duncan Malashock] has created an animation of raindrops creating ripples. Very pretty, you might say, but where’s the hack? The answer is, he’s done it as a piece of vector display work on an oscilloscope.

He’s using [Trammell Hudson’s] V.st Teensy-powered vector graphics board. We’ve featured this board before, but then it was playing vector games rather than today’s piece of artwork. The ‘scope in question is slightly unusual, a Leader LBO-51, a device optimized for vector work rather than the general purpose ‘scopes we might be used to. The artwork is written using Processing, and all the code is available in a GitHub repository.

So sit back and enjoy the artwork unfolding in the video. We look forward to more work featuring this hardware.

Continue reading “Raindrops On An Oscilloscope”

LED Artwork Disappears Right Before Your Eyes

take_a_picture_demo

If you walked into an art gallery and saw nothing but blank canvases lining the wall, you might be compelled to demand your money back, or assume that you had discovered the world’s laziest artist. If this gallery happened to be displaying work by [Brad Blucher and Kyle Clements] however, you would be mistaken.

These two artists have collaborated to create a series of works titled, “Take a Picture“. Each picture they have built is constructed to look like an empty canvas when viewed with the naked eye. If you were to take a picture of the canvas with your cell phone or digital camera however, a whole new world would open up in front of your eyes. Their artwork is constructed using infrared LEDs, which cannot be seen with the naked eye, but are visible to nearly any CMOS or CCD sensor on the market. The images range from simple smiley faces and objects to abstract geometric shapes.

It’s a very simple, yet novel approach, and we happen to think it’s pretty cool. The artists have not said what they have planned for this project in the future, but we’d love to see it expanded using larger LED arrays to display higher-resolution images, or even short movies.

Keep reading to see how they went about creating these works of art as well as a promo video demonstrating the effect.

Continue reading “LED Artwork Disappears Right Before Your Eyes”

Creepy Robot Eye Follows You And Winks In Response


Opto-Isolator is an interesting art installation that was on display at the Bitforms Gallery in NYC. This single movement-tracking eye creates a statement about how we view art and is a response to the question “what if art could view us?”. The somewhat creepy display not only follows the person viewing it, but mimics blinks a second later and averts its gaze if eye contact is kept up for too long. Its creators [Golan Levin] and [Greg Baltus] have done a great job mimicking human behavior with such a simple element and the social implications of it are truly fascinating.

If they wanted to, [Levin] and [Baltus] could possibly crank up the spook factor by adding facial recognition and programming it to remember how certain people interact with it, then tailor its behavior to wink at different rates or become more shy or bold, depending on the personality of the person watching it. Of course, that would require that someone goes back to it more than once…

[via Glass Tumbler]