Custom Powerbank In Compact Form Factor

The wide availability and power density of 18650 lithium-ion cells have made them a good option for everything from electric cars to flashlights. [Theo] needed a new power source for his FPV drone goggles, so he designed his own power bank with a very compact charge controller.The narrow PCB slips in between the cells

While [Theo] could charge the batteries with an RC battery charger, he preferred the convenience of one with a standard 5V micro USB input, and wanted battery level indication to avoid having the FPV goggles die unexpectedly mid-flight. When four 18650 cells are held in a cube arrangement, a 8x8x65 mm gap is formed between the cells. In this space [Theo] was able to fit a custom PCB with a micro USB jack, 1.3 mm power jack, BQ25606 charge controller, TPS61085 boost converter, and ATtiny MCU with LED for battery level feedback. The charge controller also allows 5V devices to be charged via USB, while the boost converter outputs 9V via the 1.3mm jack for [Theo]’s FPV goggles. Everything fits inside a nice compact 3D printed enclosure.

The project was not without hiccups. After ordering and building the PCB he discovered some minor PCB layout mistakes, and realized the boost converted could only output 600mA at 9V, which was not enough for his more power-hungry googles. He plans to fix this in the next version.

We’ve seen custom power banks in quite a few shapes and sizes, including one that runs on power tool batteries (which probably also have 18650s inside) and one that has just about every output you could want, including AC and wireless QI charging.

pierced puffed exposed leads lithium ion battery

Lessons In Li-Ion Safety

If you came here from an internet search because your battery just blew up and you don’t know how to put out the fire, then use a regular fire extinguisher if it’s plugged in to an outlet, or a fire extinguisher or water if it is not plugged in. Get out if there is a lot of smoke. For everyone else, keep reading.

I recently developed a product that used three 18650 cells. This battery pack had its own overvoltage, undervoltage, and overcurrent protection circuitry. On top of that my design incorporated a PTC fuse, and on top of that I had a current sensing circuit monitored by the microcontroller that controlled the board. When it comes to Li-Ion batteries, you don’t want to mess around. They pack a lot of energy, and if something goes wrong, they can experience thermal runaway, which is another word for blowing up and spreading fire and toxic gasses all over. So how do you take care of them, and what do you do when things go poorly?

Continue reading “Lessons In Li-Ion Safety”

Teardown: Catel CTP300 Restaurant Pager

I have a problem. If I go to a swap meet , or even a particularly well stocked yard sale, I feel compelled to buy something. Especially if that something happens to be an oddball piece of electronics. While on the whole I’m a man of few vices, I simply can’t walk away from a good deal; doubly so if it has a bunch of buttons, LEDs, and antennas on it.

Table for one, by the window.

Which is exactly how I came into the possession of a Catel CPT300 restaurant paging system for just $20 a few months ago. I do not, as you may have guessed, operate a restaurant. In fact, as many of my meals take the form of military rations eaten in front of my computer, I’m about as far away from a restaurateur as is humanly possible. But I was so enamored with the rows of little plastic pagers neatly lined up in their combination charging dock and base station that I had to have it.

The man selling it swore the system worked perfectly. Even more so after he plugged it in and it didn’t do anything. But appearances can be deceiving, and his assurance that all the pagers needed was a good charge before they’d burst back to life seemed reasonable enough to me. Of course, it hardly mattered. The regular Hackaday reader at this point knows the fate of the CPT300 was to be the same whether or not it worked.

Incidentally, those cute little pagers would not burst back to life with a good charge. They may well have burst into something, but we’ll get to that in a moment. For now, let’s take a look at a gadget that most of us have used at one time or another, but few have had the opportunity to dissect.

Continue reading “Teardown: Catel CTP300 Restaurant Pager”

DIY LiPo Protectors

Spiderman’s Uncle Ben was known to say, “With great power comes great responsibility.” The same holds true for battery power. [Andreas] wanted to use protected 18650 cells, but didn’t want to buy them off the shelf. He found a forty cent solution. Not only can you see it in the video, below, but he also explains and demonstrates what the circuit is doing and why.

Protection is important with LiPo technology. Sure, LiPo cells have changed the way we use portable electronics, but they can be dangerous. If you overcharge them or allow them to go completely dead and then charge them, they can catch fire. Because they have a low source resistance — something that is usually desirable — short-circuiting them can also create a fire hazard. We’ve covered the chemistry in depth, but to prevent all the badness you’ll want a charger circuit.

Continue reading “DIY LiPo Protectors”

Are You Down With MPPT? (Yeah, You Know Me.)

Solar cells have gotten cheaper and cheaper, and are becoming an economically viable source of renewable energy in many parts of the world. Capturing the optimal amount of energy from a solar panel is a tricky business, however. First there are a raft of physical prerequisites to operating efficiently: the panel needs to be kept clean so the sun can reach the cells, the panel needs to point at the sun, and it’s best if they’re kept from getting too hot.

Along with these physical demands, solar panels are electrically finicky as well. In particular, the amount of power they produce is strongly dependent on the electrical load that they’re presented, and this optimal load varies depending on how much illumination the panel receives. Maximum power-point trackers (MPPT) ideally keep the panel electrically in the zone even as little fluffy clouds roam the skies or the sun sinks in the west. Using MPPT can pull 20-30% more power out of a given cell, and the techniques are eminently hacker-friendly. If you’ve never played around with solar panels before, you should. Read on to see how!

Continue reading “Are You Down With MPPT? (Yeah, You Know Me.)”

Nanowire Batteries Never Need Replacing

In this day and age we’re consistently surrounded with portable electronic devices. In order for them to be called “portable”, they must run on batteries. Most, if not all, use rechargeable batteries. These batteries have a finite lifespan, and will eventually need to be replaced. UCI chemist [Reginald Penner] and doctoral candidate [Mya Le Thai] have been hard at work on making rechargeable batteries that last forever.

Nanowires are great candidates for rechargeable battery technology because the wires, thousands of times thinner than a human hair, are great conductors of electricity. The problem is repeated charging and discharging makes them brittle, which causes them to eventually fail. Typically, the researchers at UCI could get 5000 to 7000 cycles in before they failed. After some trial and error, they found that if they coat a gold nanowire with an acrylic-like gel, they can get up to 200,000 charge/discharge cycles through it before failure.

We’ve seen rechargeable battery hacks before, but making a battery that never needs replacing is sure to get everyone excited.

Maximizing A Solar Panel

Solar panels seem like simple devices: light in and electricity out, right? If you don’t care about efficiency, it might be that simple, but generally you do care about efficiency. If you are, say, charging a battery, you’d like to get every watt out of the panel. The problem is that the battery may not draw all the available current, basically leaving capacity on the table.

The solution is a technique called MPPT (Maximum Power Point Tracking). Despite sounding like a Microsoft presentation add on, MPPT uses a DC to DC converter to present a maximum load to the solar cell while providing the desired current and voltage to the load. MPPT is what [Abid Jamal] implemented to manage his solar charger.

Continue reading “Maximizing A Solar Panel”