Tracking Deep-Sky Objects

Astrophotography, and astronomy in general, takes some fairly specialized tools and a high amount of precision. Setting up the equipment can also take a lot of time, especially for amateurs traveling to various locations with their equipment, so anything that can reduce the amount of time spent looking for objects and increasing the amount of time looking at them is a welcome addition, especially since nights where conditions are ideal for these activities can be rare. [Anton] developed this real-time tracking tool for deep sky objects (DSOs) to keep tabs on most of the interesting things out there a telescope can be pointed at.

[Anton] calls his tool the Nova DSO Altitude Tracker and gets its information from SIMBAD, updating every minute for a given location on the planet. With that location data, the program calculates altitude and azimuth for various objects and also helps the user keep track of other important variables like moon illumination and angle above the horizon. It also allows the user to highlight specific objects of interest, making sure they are front and center throughout the session. Each DSO can be selected from a list to display detailed information about it such as its path, time visible in the sky, and other properties.

To get the program running, essentially all that’s required is a computer capable of running Python and a display of some sort. From there it provides a quick view of the best objects to point one’s telescope or camera at without any guesswork. With all of the code available it shouldn’t be too much of a leap to do other things with the underlying software, either, such as tying it into a tracker of some sort like this DIY telescope tracking device we featured a while back.

Gonzo Film Making With The Raspberry Pi

Gonzo journalism has been a hip thing since the 1970s or so, a way of covering a story in a compelling format with more subjectivity and less objectivity. The style has since been applied to all sorts of media, including film—and indeed, the makers of the Gonzo Pi.

The Gonzo Pi is a camera with an open source design, yes, but it’s also a lot more than that. It’s intended to be an entire platform for film-making, all in the one housing. Camera-wise, the design combines a Raspberry Pi with the requisite first-party High Quality Camera, and warps it up in a 3D printed housing. You can build it up with a viewfinder and whatever old-school C-mount or 8 mm film lenses you can lay your hands on.

Beyond that, there’s an editing platform baked in to the device. It’s not unlike the tools in so many social media apps these days. The idea of the Gonzo Pi is that rather than shooting a whole ton of footage and takes and poring over them in great detail later, instead, you run and gun with the device and edit as you go. You can shoot retakes as you need, and even dub in more audio as necessary as you compose your film on the hoof. It’s intended to change the way you make films by virtue of its unique compositional paradigm.

We’ve featured some neat homebrew cameras before, to be sure, but none that quite put the edit suite right in the box.

Continue reading “Gonzo Film Making With The Raspberry Pi”

New Camera Does Realtime Holographic Capture, No Coherent Light Required

Holography is about capturing 3D data from a scene, and being able to reconstruct that scene — preferably in high fidelity. Holography is not a new idea, but engaging in it is not exactly a point-and-shoot affair. One needs coherent light for a start, and it generally only gets touchier from there. But now researchers describe a new kind of holographic camera that can capture a scene better and faster than ever. How much better? The camera goes from scene capture to reconstructed output in under 30 milliseconds, and does it using plain old incoherent light.

The camera and liquid lens is tiny. Together with the computation back end, they can make a holographic capture of a scene in under 30 milliseconds.

The new camera is a two-part affair: acquisition, and calculation. Acquisition consists of a camera with a custom electrically-driven liquid lens design that captures a focal stack of a scene within 15 ms. The back end is a deep learning neural network system (FS-Net) which accepts the camera data and computes a high-fidelity RGB hologram of the scene in about 13 ms.  How good are the results? They beat other methods, and reconstruction of the scene using the data looks really, really good.

One might wonder what makes this different from, say, a 3D scene captured by a stereoscopic camera, or with an RGB depth camera (like the now-discontinued Intel RealSense). Those methods capture 2D imagery from a single perspective, combined with depth data to give an understanding of a scene’s physical layout.

Holography by contrast captures a scene’s wavefront information, which is to say it captures not just where light is coming from, but how it bends and interferes. This information can be used to optically reconstruct a scene in a way data from other sources cannot; for example allowing one to shift perspective and focus.

Being able to capture holographic data in such a way significantly lowers the bar for development and experimentation in holography — something that’s traditionally been tricky to pull off for the home gamer.

Close up of Zenit 19 camera

Behind The Lens: Tearing Down A Rare Soviet Zenit 19

If you’re into Soviet-era gear with a techy twist, you’ll love this teardown of a rare Zenit 19 camera courtesy of [msylvain59]. Found broken on eBay (for a steal!), this 1982 made-in-USSR single-lens reflex camera isn’t the average Zenit. It features, for example, electronically controlled shutter timing – quite the upgrade from its manual siblings.

The not-so-minor issue that made this Zenit 19 come for cheap was a missing shutter blade. You’d say – one blade gone rogue! Is it lost in the camera’s guts, or snapped clean off? Add to that some oxidized battery contacts and a cracked viewfinder, and you’ve got proper fixer-upper material. But that’s where it gets intriguing: the camera houses a rare hybrid electronic module (PAPO 074), complete with epoxy-covered resistors. The shutter speed dial directly adjusts a set of resistors, sending precise signals to the shutter assembly: a neat blend of old-school mechanics and early electronics.

Now will it shutter, or stutter? With its vertical metal shutter – uncommon in Zenits – and separate light metering circuitry, this teardown offers a rare glimpse into Soviet engineering flair. Hungry for more? We’ve covered a Soviet-era computer and a radio in the past. If you’re more into analog camera teardowns, you might like this analog Pi upgrade attempt, or this bare minimum analog camera project.

Continue reading “Behind The Lens: Tearing Down A Rare Soviet Zenit 19”

A 3D Printed Camera You Can Now Download, Shutter And All

A couple of years ago we were excited to read news of an entirely 3D printed camera, right down to the shutter. We wrote it up back then but sadly the required STL files were not yet available. Now after time away with his family, its creator [Mark Hiltz] is back. The medium-format Pioneer Camera can now be downloaded for printing in its entirety under a Creative Commons licence.

Looking at the design, it appears to be a relatively straightforward build. The shutter is extremely simple, as far as we can see, relying on magnets to ensure that the open part of its rotation is at an unstable repulsing point between stable magnetic poles. The images aren’t perfect because he’s using a very simple lens, but this is part of the charm of a camera like this one. We hope that people will take it and produce refinements to the design making for a cheap and good entry to medium format photography.

While you’re printing your own Pioneer, take a look at our original coverage.

A Waist Level Viewfinder For Not A Lot

Photographic accessories are often plagued by high prices, as photography is considered a rich man’s game. It doesn’t have to be that way though, and [Snappiness] is here to get you started on the route to cheaper kit with a waist-level viewfinder project.

If you’ve used a twin-lens reflex camera then you should be familiar with a waist level viewfinder, it’s a lens and mirror arrangement allowing the photographer to frame the shot looking down from above. Modern cameras often have no viewfinder, so this is aimed at digital compacts without flip-up screens.

It has three components, all available for relatively low prices, and mounted in a 3D printed case. There’s a prime lens, a mirror, and a Fresnel lens forming the part the photographer looks through. It’s a simple device, but still one which would cost a lot more off the shelf. The video is below the break.

It might interest you to know that this is not the first viewfinder project we’ve brought you for digital cameras.

Continue reading “A Waist Level Viewfinder For Not A Lot”

Camera Slider Uses Repositionable Rail To Do Rotational Moves

You can buy motorized camera sliders off-the-shelf, but they’re pretty costly. Alternatively, you can make one yourself, and it’s not even that hard if you’re kitted out with a 3D printer. [Creative 3D Printing] did just that with a nifty design that adds rotation into the mix. Check it out in the video below.

Why should a camera get all the fun? Try your phone.

The basic slider is built out of 3D-printed components and some good old aluminum extrusion. A small 12-volt motor trucks the camera cart back and forth using a leadscrew. It’s torquey enough and slow enough that there isn’t much need for more advanced control—the motor just does the job. There’s also a limit switch set up to trigger a neat auto-reverse function.

The neat part, though, is the rotational mechanism. A smooth steel rod is attached to the slider’s housing, which can be set up in a straight line or aligned diagonally if desired. In the latter case, it rotates the mounting on the camera cart via a crank, panning the camera as it moves along the slider’s trajectory.

It’s a mechanically sophisticated design and quite unlike most of the camera sliders we feature around these parts.

Continue reading “Camera Slider Uses Repositionable Rail To Do Rotational Moves”