Build Yourself A Medium-Format Camera

Medium format cameras have always been a step up from those built in the 35 mm format. By virtue of using a much larger film, they offer improved resolution and performance. If you want a medium format film camera, you can always hunt for some nice vintage gear. Or, you could build one from scratch — like the MRF2 from [IDENTIDEM.design.]

The MRF2 might be a film camera, but in every other way, it’s a thoroughly modern machine. It’s a rangefinder design, relying on a DTS6012M LIDAR time-of-flight sensor to help ensure your shots are always in sharp focus. An ESP32 is responsible for running the show, and it’s hooked up to OLED displays in the viewfinder and on the body to show status info. The lens is coupled with a linear position sensor for capturing accurate shots, there’s a horizon indicator in the viewfinder, and there’s also a nice little frame counter using a rotary encoder to track the film.

Shots from a prototype on Instagram show that this camera can certainly pull off some beautiful shots. We love a good camera build around these parts. You can even make one out of a mouse if you’re so inclined.

Continue reading “Build Yourself A Medium-Format Camera”

Small camera with greyscale image

Camera Capabilities Unlocked From A Mouse

There is a point where taking technology for granted hides some of the incredible capabilities of seemingly simple devices. Optical mice are a great example of this principle, using what are more or less entirely self-contained cameras just for moving the cursor across your screen. Don’t believe us? Check out this camera made from an old optical mouse from [Dycus]!

For those unfamiliar with optical mice, the sensor used for tracking movement, like a camera, is just an array of photosensitive sensors. This allows a simple on-board microcontroller to convert the small changes from the visual sensor into acceleration/movement information to be sent to the computer.

Proving how capable these sensors can truly be, [Dycus]’s camera manages a whole 30×30 array of picture quality. Along with glorious greyscale, the pictures achieved from such a camera are more than recognizable. Putting together the camera didn’t even require anything crazy beyond the sensor itself. What appears to be a Teensy LC board, basic buttons, and a small screen are essentially everything required to replicate the camera’s functionality. Pictures, both standard and “panoramic”, can be viewed in a variety of color palettes stored on board. Along with a surprisingly impressive feature set, the idea is impressive.

Limitations are often the mother of innovation, no matter if self-imposed or not, as seen here. However, [Dycus] still had a whole 30×30 array to photograph. What about a single pixel? Let’s make it even harder; we can’t look directly at the subject! This is exactly what was done here in this impressive demonstration of clever engineering.

Thanks to JohnU and Thinkerer for the tip!

Broken Phone To Cinema Camera With A Lens Upgrade

The advent of the mobile phone camera has caused a revolution in film making over the last couple of decades, lowering the barrier to entry significantly, and as the cameras have improved, delivering near-professional-grade quality in some cases. Mobile phone manufacturers hire film makers to promote their new flagship models and the results are very impressive, but there is still a limitation when it comes to the lenses. [Evan Monsma] has broken through that barrier, modifying an iPhone to take C-mount cinema lenses.

It’s likely many of us have one or two broken mobile phones around, and even if they aren’t flagship models they’ll still have surprisingly good camera sensors. This one is an iPhone that’s seen better days, with a severely cracked glass back and a dislodged lens cover on one of its cameras. Removing the back and the lens cover reveals the sensor. The video below the break has a lot of woodwork and filing away of the phone, as he modifies a C-to-CS ring to serve as a C-mount. In reality the flange distance makes it a CS mount so his C-mount lenses need an adapter, but as anyone who’s used a Raspberry Pi camera will tell you, that’s no hardship.

The final camera has a thick plywood back with a tripod mount installed, the other two cameras work with their Apple lenses, and the C-mount gives great results with a cinema lens. We’re concerned that the Super Glue he uses to fix it all together might not hold up to the weight of bigger lenses, but we’re here for this project and we love it.

Continue reading “Broken Phone To Cinema Camera With A Lens Upgrade”

waverider

Waverider: Scanning Spectra One Pixel At A Time

Hyperspectral cameras aren’t commonplace items; they capture spectral data for each of their pixels. While commercial hyperspectral cameras often start in the tens of thousands of dollars, [anfractuosity] decided to make his own with the Waverider.

To capture spectral data from every pixel location in the camera, [anfractuosity] first needed a way to collect that data — for that, he used an AFBR-S20M2WV, a miniature USB spectrometer he picked up second-hand. This sensor allows for the collection of data from 225 nm all the way up to 1000 nm. Of course, the sensor can only do that for one single input, so to turn it into a camera, [anfractuosity] added a stepper-driven x-y stage controlled by a Raspberry Pi Pico and some TMC2130 stepper drivers.

Continue reading “Waverider: Scanning Spectra One Pixel At A Time”

A Trail Camera Built With Raspberry Pi

You can get all kinds of great wildlife footage if you trek out into the woods with a camera, but it can be tough to stay awake all night. However, this is a task you can readily automate, as [Luke] did with his DIY trail camera.

A Raspberry Pi Zero 2W serves as the heart of the build. It’s compact and runs on very little power, but also provides a good amount more processing power than the original Raspberry Pi Zero. It’s kitted out with the Raspberry Pi AI Camera, which uses the Sony IMX500 Intelligent Vision Sensor — providing a great platform for neural networks doing image classification and similar machine learning tasks. A Witty Pi power management module is used both for its real time clock and to schedule start-ups and shutdowns to best manage the power on offer from the batteries. All these components are wrapped up in a 3D printed housing to keep the Pi safe out in the wild.

We’ve seen some neat projects in this vein before.

Continue reading “A Trail Camera Built With Raspberry Pi”

Detecting Surveillance Cameras With The ESP32

These days, surveillance cameras are all around us, and they’re smarter than ever. In particular, many of them are running advanced algorithms to recognize faces and scan license plates, compiling ever-greater databases on the movements and lives of individuals. Flock You is a project that aims to, at the very least, catalogue this part of the surveillance state, by detecting these cameras out in the wild.

The system is most specifically set up to detect surveillance cameras from Flock Safety, though it’s worth noting a wide range of companies produce plate-reading cameras and associated surveillance systems these days. The device uses an ESP32 microcontroller to detect these devices, relying on the in-built wireless hardware to do the job. The project can be built on a Oui-Spy device from Colonel Panic, or just by using a standard Xiao ESP32 S3 if so desired. By looking at Wi-Fi probe requests and beacon frames, as well as Bluetooth advertisements, it’s possible for the device to pick up telltale transmissions from a range of these cameras, with various pattern-matching techniques and MAC addresses used to filter results in this regard. When the device finds a camera, it sounds a buzzer notifying the user of this fact.

Meanwhile, if you’re interested in just how prevalent plate-reading cameras really are, you might also find deflock.me interesting. It’s a map of ALPR camera locations all over the world,  and you can submit your own findings if so desired. The techniques used by in the Flock You project are based on learnings from the DeFlock project. Meanwhile, if you want to join the surveillance state on your own terms, you can always build your own license plate reader instead!

[Thanks to Eric for the tip!]

Build Your Own 6K Camera

[Curious Scientist] has been working with some image sensors. The latest project around it is a 6K camera. Of course, the sensor gives you a lot of it, but it also requires some off-the-shelf parts and, of course, some 3D printed components.

An off-the-shelf part of a case provides a reliable C mount. There’s also an IR filter in a 3D-printed bracket.

Continue reading “Build Your Own 6K Camera”