A piece of perovskite crystal

Perovskite Solar Cell Crystals See The Invisible

A new kind of ‘camera’ is poking at the invisible world of the human body – and it’s made from the same weird crystals that once shook up solar energy. Researchers at Northwestern University and Soochow University have built the first perovskite-based gamma-ray detector that actually works for nuclear medicine imaging, like SPECT scans. This hack is unusual because it takes a once-experimental lab material and shows it can replace multimillion-dollar detectors in real-world hospitals.

Current medical scanners rely on CZT or NaI detectors. CZT is pricey and cracks like ice on a frozen lake. NaI is cheaper, but fuzzy – like photographing a cat through steamed-up glass. Perovskites, however, are easier to grow, cheaper to process, and now proven to detect single photons with record-breaking precision. The team pixelated their crystal like a smartphone camera sensor and pulled crisp 3D images out of faint radiation traces. The payoff: sharper scans, lower radiation doses, and tech that could spread beyond rich clinics.

Perovskite was once typecast as a ‘solar cell wonder,’ but now it’s mutating into a disruptive medical eye. A hack in the truest sense: re-purposing physics for life-saving clarity.

Camera And ChArUco Keep The Skew Out Of Your 3D Prints

Do you or a loved one suffer from distorted 3D prints? Does your laser cutter produce parallelograms instead of rectangles? If so, you might be suffering from CNC skew miscalibration, and you could be entitled to significant compensation for your pain and suffering. Or, in the reality-based world, you could simply fix the problem yourself with this machine-vision skew correction system and get back to work.

If you want to put [Marius Wachtler]’s solution to work for you, it’s probably best to review his earlier work on pressure-advance correction. The tool-mounted endoscopic camera he used in that project is key to this one, but rather than monitoring a test print for optimum pressure settings, he’s using it to detect minor differences in the X-Y feed rates, which can turn what’s supposed to be a 90-degree angle into something else.

The key to detecting these problems is the so-called ChArUco board, which is a hybrid of a standard chess board pattern with ArUco markers added to the white squares. ArUco markers are a little like 2D barcodes in that they encode an identifier in an array of black and white pixels. [Marius] provides a PDF of a ChArUco that can be printed and pasted to a board, along with a skew correction program that analyzes the ChArUco pattern and produces Klipper commands to adjust for any skew detected in the X-Y plane. The video below goes over the basics.

For as clever and useful as ChArUco patterns seem to be, we’re surprised we haven’t seen them used for more than this CNC toolpath visualization project (although we do see the occasional appearance of ArUco). We wonder what other applications there might be for these boards. OpenCV supports it, so let us know what you come up with.

Continue reading “Camera And ChArUco Keep The Skew Out Of Your 3D Prints”

Light Transport And Constructing Images From A Projector’s Point Of View

Imagine you have a projector pointing at a scene, which you’re photographing with a camera aimed from a different point. Using the techniques of modelling light transport, [okooptics] has shown us how you can capture an image from the projector’s point of view, instead of the camera—and even synthetically light the scene however you might like.

The test scene used for the explanation of the work.

The concept involves capturing data regarding how light is transported from the projector to the scene. This could be achieved by lighting one pixel of the projector at a time while capturing an image with the camera. However, even for a low-resolution projector, of say 256×256 pixels, this would require capturing 65536 individual images, and take a very long time. Instead, [okooptics] explains how the same task can be achieved by using binary coded images with the projector, which allow the same data to be captured using just seventeen exposures.

Once armed with this light transport data, it’s possible to do wild tricks. You can synthetically light the scene, as if the projector were displaying any novel lighting pattern of your choice. You can also construct a simulated photo taken from the projector’s perspective, and even do some rudimentary depth reconstruction. [okooptics] explains this tricky subject well, using visual demonstrations to indicate how it all works.

The work was inspired by the “Dual Photography” paper published at SIGGRAPH some time ago, a conference that continues to produce outrageously interesting work to this day.

Continue reading “Light Transport And Constructing Images From A Projector’s Point Of View”

Game Boy Camera In Wedding Photo Booth

For those of a certain age the first digital camera many of us experienced was the Game Boy Camera, an add-on for the original Game Boy console. Although it only took pictures with the limited 4-tone monochrome graphics of this system, its capability of being able to take a picture, edit it, create drawings, and then print them out on the Game Boy Printer was revolutionary for the time. Of course the people who grew up with this hardware are about the age to be getting married now (or well beyond), so [Sebastian] capitalized on the nostalgia for it with this wedding photo booth that takes pictures with the Game Boy Camera.

The photo booth features the eponymous Game Boy Camera front-and-center, with a pair of large buttons to allow the wedding guests to start the photography process. The system takes video and then isolates a few still images from it to be printed with the Game Boy Printer. The original Game Boy hardware, as well as a Flask-based web app with a GUI, is all controlled with a Raspberry Pi 4. There’s also a piece of Game Boy hardware called the GB Interceptor that sits between the Game Boy console and the camera cartridge itself which allows the Pi to capture the video feed directly.

The booth doesn’t stop with Game Boy hardware, though. There’s also a modern mirrorless digital camera set up in the booth alongside the Game Boy Camera which allows for higher resolution, full color images to be taken as well. This is also controlled with the same hardware and provides a more modern photo booth experience next to the nostalgic one provided by the Game Boy. There have been many projects which attempt to modernize this hardware, though, like this build which adds color to the original monochrome photos or this one which adds Wi-Fi capability.

Continue reading “Game Boy Camera In Wedding Photo Booth”

Fusing Cheap EBay Find Into A Digital Rangefinder

One of the earliest commercially-successful camera technologies was the rangefinder — a rather mechanically-complex system that allows a photographer to focus by triangulating a subject, often in a dedicated focusing window, and and frame the shot with another window, all without ever actually looking through the lens. Rangefinder photographers will give you any number of reasons why their camera is just better than the others — it’s faster to use, the focusing is more accurate, the camera is lighter — but in today’s era of lightweight mirrorless digitals, all of these arguments sound like vinyl aficionados saying “The sound is just more round, man. Digital recordings are all square.” (This is being written by somebody who shoots with a rangefinder and listens to vinyl).

While there are loads of analog rangefinders floating around eBay, the trouble nowadays is that digital rangefinders are rare, and all but impossible to find for a reasonable price. Rather than complaining on Reddit after getting fed up with the lack of affordable options, [Mr.50mm] decided to do something about it, and build his own digital rangefinder for less than $250.

Part of the problem is that, aside from a few exceptions, the only digital rangefinders have been manufactured by Leica, a German company often touted as the Holy Grail of photography. Whether you agree with the hype or consider them overrated toys, they’re sure expensive. Even in the used market, you’d be hard-pressed to find an older model for less than $2,000, and the newest models can be upwards of $10,000.

Rather than start from scratch, he fused two low-cost and commonly-available cameras into one with some careful surgery and 3D printing. The digital bits came from a Panasonic GF3, a 12 MP camera that can be had for around $120, and the rangefinder system from an old Soviet camera called the Fed 5, which you can get for less than $50 if you’re lucky. The Fed 5 also conveniently worked with Leica Thread Mount (LTM) lenses, a precursor to the modern bayonet-mount lenses, so [Mr.50mm] lifted the lens mounting hardware from it as well.

Even LTM lenses are relatively cheap, as they’re not compatible with modern Leicas. Anyone who’s dabbled in building or repairing cameras will tell you that there’s loads of precision involved. If the image sensor, or film plane, offset is off by the slightest bit, you’ll never achieve a sharp focus — and that’s just one of many aspects that need to be just right. [Mr.50mm]’s attention to detail really paid off, as the sample images (which you can see in the video below) look fantastic. Continue reading “Fusing Cheap EBay Find Into A Digital Rangefinder”

A Look Through The Eye Of A Bowling Ball

If you are anything like us, last time you went bowling, you thought more about how the ball came back to you than actually knocking down the pin. Perhaps you even wondered what it would be like to be a bowling ball making its way back through mysterious and hidden machines. [Wren] and [Erik Beck] did as well, so they set out to make a bowling ball camera to find out.

At the heart of the contraption is an Insta360 X5 camera nestled between water-jet cut metal plates. Because each lens of the camera has a 200 degree field of view, anything in the overlap of the two lenses simply does not appear, so the two metal plates likewise, do not appear. This does leave a somewhat noticeable seam down the middle of the footage, but overall worked out very well. To prevent vibrations in the bowling ball, it can only be rolled along the plate line, making said seam appear in all the footage. Because the stabilization is happening purely digitally, and the camera itself is spinning with the ball, motion blur became an issue immediately. Fortunately increasing the shutter speed fixed the issue, along with an increase in ISO to compensate for the decreased exposure.

Continue reading “A Look Through The Eye Of A Bowling Ball”

Digitally-Converted Leica Gets A 64-Megapixel Upgrade

Leica’s film cameras were hugely popular in the 20th century, and remain so with collectors to this day. [Michael Suguitan] has previously had great success converting his classic Leica into a digital one, and now he’s taken the project even further.

[Michael’s] previous work saw him create a so-called “digital back” for the Leica M2. He fitted the classic camera with a Raspberry Pi Zero and a small imaging sensor to effectively turn it into a digital camera, creating what he called the LeicaMPi. Since then, [Michael] has made a range of upgrades to create what he calls the LeicaM2Pi.

The upgrades start with the image sensor. This time around, instead of using a generic Raspberry Pi camera, he’s gone with the fancier ArduCam OwlSight sensor. Boasting a mighty 64 megapixels, it’s still largely compatible with all the same software tools as the first-party cameras, making it both capable and easy to use. With a  crop factor of 3.7x, the camera’s Voigtlander 12mm lens has a much more useful field of view.

Unlike [Michael’s] previous setup, there was also no need to remove the camera’s IR filter to clear the shutter mechanism. This means the new camera is capable of taking natural color photos during the day.  [Michael] also added a flash this time around, controlled by the GPIOs of the Raspberry Pi Zero. The camera also features a much tidier onboard battery via the PiSugar module, which can be easily recharged with a USB-C cable.

If you’ve ever thought about converting an old-school film camera into a digital shooter, [Michael’s] work might serve as a great jumping off point. We’ve seen it done with DSLRs, before, too! Video after the break.

Continue reading “Digitally-Converted Leica Gets A 64-Megapixel Upgrade”