Giant Scale RC A350 Airliner Using Carbon Fibre And 3D Printing

Large scale RC aircraft are pleasure to see on the ground and in the air, but putting in the months of effort required to build them requires special dedication. Especially since there is a real possibility it could end up in pieces on the ground at some point.  [Ramy RC] is one of those dedicated craftsman, and he has a thing for RC airliners. His latest project is a large Airbus A350, and the painstaking build process is something to behold.

The outer skin of the aircraft is mostly carbon fibre, with wood internal framing to keep everything rigid. The fuselage and winglets are moulded using 3D printed moulds. These were printed in pieces on a large format 3D printer, and painstakingly glued together and prepared to give a perfect surface finish. The wing surfaces are moulded in flat section and then glued onto the frames. [Ramy RC]’s attention to detail is excellent, making all the control surfaces close as possible to the real thing, and retractable landing gear with servo actuated hatches. Thrust comes from a pair of powerful EDF motors, housed in carbon fibre nacelles.

This project has been in the works for almost 5 months so far and it looks spectacular. We’re looking forward to the first flight, and will be holding thumbs that is remains in one piece for a long time. See the video after the break for final assembly of this beast.

For the next step up from RC aircraft, you can always build your own full size aircraft in your basement. If you have very very deep pockets, get yourself a private hangar/workshop and build a turbine powered bush plane.

Thanks for the tip [tayken]! Continue reading “Giant Scale RC A350 Airliner Using Carbon Fibre And 3D Printing”

A Safe, Ducted Drone With No Visible Blades

We love a good drone build here at Hackaday, but no matter how much care is taken, exposed propellers are always a risk: you don’t have to look far on the web to see videos to prove it. Conventional prop-guards like those seen on consumer drones often only protect the side of the propeller, not the top, and the same problem goes for EDFs. [Stefano Rivellini]’s solution was to take some EDFs and place them in the middle of large carbon fibre thrust tubes, making it impossible to get anywhere near the moving parts. The creation is described as a bladeless drone, but it’s not: they’re just well hidden inside the carbon fibre.

We’re impressed by the fact that custom moulds were made for every part of the body, allowing [Stefano] to manually create the required shapes out of carbon fibre cloth and epoxy. He even went to the trouble of running CFD on the design before manufacture, to ensure that there would be adequate thrust. Some DJI electronics provide the brains, and there’s also a parachute deployment tube on the back.

Whilst there’s no doubt that the finished drone succeeds at being safe, the design does come at the cost of efficiency. The power electronics needed are far more serious than we’d usually see on a drone of this size, to compensate for the extra mass of the thrust ducts and the impediment to the air-flow caused by the two 90° bends.

One of our favorite EDF drone innovations that we saw recently was this thrust-vectored single rotor device, a really unique idea that took some interesting control methods to implement.

[Thanks, Itay]

Continue reading “A Safe, Ducted Drone With No Visible Blades”

Pi Handheld With A Mindblowing Enclosure

The Raspberry Pi is possibly the world’s most popular emulation platform these days. While it was never intended to serve this purpose, the fact remains that a small, compact computer with flexible I/O is ideally suited to it. We’ve featured a multitude of builds over the years using a Pi in a mobile form factor to take games on the go. [Michael]’s build, however, offers a lot more than a few Nintendo ROMs and some buttons from eBay. It’s a tour de force in enclosure design.

The build starts with the electronics. In 2017 it’s no longer necessary to cobble together five different accessory boards to handle the controls, battery charging, and display. Boards like Kite’s Super All In One exist, handling everything necessary for a handheld game console. With this as a starting point, he then set out to recreate Nintendo’s classic Game Boy, with a few tweaks to form and function.

It’s a textbook example of smart planning, design, and execution. We are taken through the process of creating the initial CAD drawings, then combining 3D printed parts with wood and carbon fibre for a look that is more akin to a high-end piece of hi-fi gear than anything related to gaming. The attention to detail is superb and the write-up makes it look easy, while [Michael] shares tips on how to safely cut carbon fibre to make your own buttons.

The final results are stunning, and it’s a great example of why a fine piece of wood is always a classy way to go for an enclosure. For another great example, try this walnut keyboard, or check out the roots of the Raspberry Pi Game Boy movement.

Delivery Drone Aims To Make Package Handoffs Safer Than Ever

Picture this: you’re at home and you hear a rapping on your door. At last!– your parcel has arrived. You open the door, snatch a drone out of the air, fold it up, remove your package, unfold it and set it down only for it to take off on its merry way. Hand-delivery courier drones might be just over the horizon.

Designed in the [Laboratory of Intelligent Systems] at Switzerland’s École Polytechnique Fédérale de Lausanne and funded by [NCCR Robotics], this delivery drone comes equipped with its own collapsible carbon fibre shield — it fold up small enough to fit in a backpack — and is able to carry packages such as letters, small parcels, and first aid supplies up to 500 g and to 2 km away!

Continue reading “Delivery Drone Aims To Make Package Handoffs Safer Than Ever”