From Tube And Wing To Just Wing: The Future Of Airliners

Airliners have become an unremarkable part of modern life, but unless you happen to be an aircraft enthusiast, you’d be forgiven for thinking the latest Airbus model looks more or less the same as the Boeing 707 that ushered in the Jet Age. But that might soon change, with blended wing airliners looking like the next step in air travel efficiency. In the video after the break, [Real Engineering] takes us on a fascinating tour of the past and possible future of jet airliners.

Contemporary airliners all still follow the same old “tube and wing” design, but have become vastly more efficient. The latest jetliners burn almost 50% less fuel per passenger-km than they did 50 years ago. This is thanks to better engines, improved aerodynamics, reduced weight, and a vast array of other, often invisible changes. However, it’s looking like a more drastic change is needed to keep the progress going, and NASA, Boeing, and Airbus are all betting on blended wing designs to do this.

Blended wing aircraft are basically flying wings, where the cargo-carrying section of aircraft is shorter, wider, and produces lift. This layout can be used to increase the aircraft’s internal volume, and improve aerodynamic losses, by eliminating the tail. Research shows that blended wing design could reduce fuel consumption by as much as 27%. Since load and produced lift are spread more evenly along the entire width of the aircraft, it also reduces the amount of structural reinforcement required for the wings, especially at the root. The large internal volumes also allow other power sources, like hydrogen fuel cells to be used.

Blended wing aircraft are not without challenges. They are inherently unstable and require complex control systems to fly. These control systems depend on sensors, actuators, and software to work properly, and require multiple levels of redundancy. The omission of these redundancies ultimately led to the 2008 crash of a B-2 bomber, and the more recent fatal crashes of Boeing’s 737 MAX airliners. Also, unlike tubular fuselages, blended wing designs are not ideal pressure vessels. However, this is not a major problem thanks to the availability of carbon composite materials to create strong, lightweight structures.

With aircraft technology moving as fast as ever, we look forward to seeing what the future will bring. Whether it’s personal rotorcraft or commercial space flight, it sure won’t be boring.

Continue reading “From Tube And Wing To Just Wing: The Future Of Airliners”

The Politics Of Supersonic Flight: The Concord(e)

Every nation has icons of national pride: a sports star, a space mission, or a piece of architecture. Usually they encapsulate a country’s spirit, so citizens can look up from their dreary lives and say “Now there‘s something I can take pride in!”  Concorde, the supersonic airliner beloved by the late 20th century elite for their Atlantic crossings, was a genuine bona-fide British engineering icon.

But this icon is unique as symbols of national pride go, because we share it with the French. For every British Airways Concorde that plied the Atlantic from London, there was another doing the same from Paris, and for every British designed or built Concorde component there was another with a French pedigree. This unexpected international collaboration gave us the world’s most successful supersonic airliner, and given the political manoeuverings that surrounded its gestation, the fact that it made it to the skies at all is something of a minor miracle. Continue reading “The Politics Of Supersonic Flight: The Concord(e)”

Airlines Seek Storage For Grounded Fleets Due To COVID-19

Ask any airline executive what their plans were back in January 2020, and you’d probably get the expected spiel about growing market share and improving returns for shareholders. Of course, the coronovirus pandemic quickly changed all that in the space of just a few months. Borders closed, and worldwide air travel ground to a halt.

Suddenly, the world’s airlines had thousands of planes and quite literally nowhere to go. Obviously, leaving the planes just sitting around in the open wouldn’t do them any good. So what exactly is involved in mothballing a modern airliner?

Continue reading “Airlines Seek Storage For Grounded Fleets Due To COVID-19”

Boom Hopes To Reignite Supersonic Travel With XB-1

Since the last Concorde rolled to a stop in 2003, supersonic flight has been limited almost exclusively to military aircraft. Many have argued that it’s an example of our civilization seeming to slip backwards on the technological scale, akin to returning to the Age of Sail. There’s no debating that we have the capability of moving civilian passengers and cargo at speeds above Mach 1 safely, it’s just something that isn’t done anymore.

Concorde on its final flight, November 2003

Of course to be fair, there’s plenty of good reasons why the sky isn’t filled with supersonic aircraft. For one, they’ve historically been more drastically expensive to build and operate than their slower peers. The engineering that goes into an aircraft that can operate for an extended period of time at supersonic speeds doesn’t come cheap, nor do the materials required. But naturally, the same could have been said for commercial jet aircraft at one time. With further development, the cost would eventually come down.

The real problem holding supersonic aircraft back is much more practical: they are just too loud. From the roar of their powerful engines on takeoff to the startling and sometimes even dangerous “sonic boom” they leave in their wake, nobody wants them flying over their homes or communities. In fact, civilian flight above Mach 1 over land has been outlawed in the United States for exactly this reason since 1973 under the Federal Aviation Administration’s regulation 91.817.

For any commercial supersonic aircraft to be viable, it needs to not only be much cheaper to build and operate than older designs, but it also needs to be far quieter. Which is exactly what Boom hopes to demonstrate with their XB-1 prototype. The sleek craft will never enter into commercial service itself, but if all goes according to plan during its 2021 test flights, it may prove that the state-of-the-art in aircraft design is ready to usher in a new era of supersonic civilian transport.

Continue reading “Boom Hopes To Reignite Supersonic Travel With XB-1”

Jet Airliner Nacelle Becomes A Unique Camper

It’s possible that some of you will have thought about making a custom camper for yourselves. Some of you may even have gone as far as to build a teardrop caravan. It’s very unlikely though that you’ll have gone as far as [Steve Jones] though, who took an outer engine nacelle from a retired ex-RAF VC-10 airliner and converted it into a camper that is truly one of a kind.

On the face of it a jet engine nacelle should be an easy shell for such a project, but such a simplified view perhaps doesn’t account for the many vents, pipes, and hatches required by the engine in flight. Turning it into a waterproof housing for a camper was a significant job, which he has managed to do while leaving one set of engine access doors available as a large opening for a room with a view.

The nacelle is mounted on a narrowed former caravan chassis, and with an eye-catching window created from its former air intake and a very well executed interior fit-out it makes for a camper that many of us would relish trying for ourselves. You can see a video of it below the break, and we wish we could be lucky enough to encounter it in a campsite one summer.

We’ve shown you our share of campers over the years, but perhaps this 3D printed one has most appeal.

Continue reading “Jet Airliner Nacelle Becomes A Unique Camper”

Giant Scale RC A350 Airliner Using Carbon Fibre And 3D Printing

Large scale RC aircraft are pleasure to see on the ground and in the air, but putting in the months of effort required to build them requires special dedication. Especially since there is a real possibility it could end up in pieces on the ground at some point. [Ramy RC] is one of those dedicated craftsman, and he has a thing for RC airliners. His latest project is a large Airbus A350, and the painstaking build process is something to behold.

The outer skin of the aircraft is mostly carbon fibre, with wood internal framing to keep everything rigid. The fuselage and winglets are moulded using 3D printed moulds. These were printed in pieces on a large format 3D printer, and painstakingly glued together and prepared to give a perfect surface finish. The wing surfaces are moulded in flat section and then glued onto the frames. [Ramy RC]’s attention to detail is excellent, making all the control surfaces close as possible to the real thing, and retractable landing gear with servo actuated hatches. Thrust comes from a pair of powerful EDF motors, housed in carbon fibre nacelles.

This project has been in the works for almost 5 months so far and it looks spectacular. We’re looking forward to the first flight, and will be holding thumbs that is remains in one piece for a long time. See the video after the break for final assembly of this beast.

For the next step up from RC aircraft, you can always build your own full size aircraft in your basement. If you have very very deep pockets, get yourself a private hangar/workshop and build a turbine powered bush plane.

Thanks for the tip [tayken]! Continue reading “Giant Scale RC A350 Airliner Using Carbon Fibre And 3D Printing”

GPS And ADS-B Problems Cause Cancelled Flights

Something strange has been going on in the friendly skies over the last day or so. Flights are being canceled. Aircraft are grounded. Passengers are understandably upset. The core of the issue is GPS and ADS-B systems. The ADS-B system depends on GPS data to function properly, but over this weekend a problem with the quality of the GPS data has disrupted normal ADS-B features on some planes, leading to the cancellations.

What is ADS-B and Why Is It Having Trouble?

Automatic Dependent Surveillance-Broadcast (ADS-B) is a communication system used in aircraft worldwide. Planes transmit location, speed, flight number, and other information on 1090 MHz. This data is picked up by ground stations and eventually displayed on air traffic controller screens. Aircraft also receive this data from each other as part of the Traffic Collision Avoidance System (TCAS).

ADS-B isn’t a complex or encrypted signal. In fact, anyone with a cheap RTL-SDR can receive the signal. Aviation buffs know how cool it is to see a map of all the aircraft flying above your house. Plenty of hackers have worked on these systems, and we’ve covered that here on Hackaday. In the USA, the FAA will effectively require all aircraft to carry ADS-B transponders by January 1st, 2020. So as you can imagine, most aircraft already have the systems installed.

The ADS-B system in a plane needs to get position data before it can transmit. These days, that data comes from a global satellite navigation system. In the USA, that means GPS. GPS is currently having some problems though. This is where Receiver autonomous integrity monitoring (RAIM) comes in. Safety-critical GPS systems (those in planes and ships) cross-check their current position. If GPS is sending degraded or incorrect data, it is sent to the FAA who displays it on their website. The non-precision approach current outage map is showing degraded service all over the US Eastern seaboard, as well as the North. The cause of this signal degradation is currently unknown.

What Hardware is Affected?

GPS isn’t down though — you can walk outside with your cell phone to verify that. However, it is degraded. How a plane’s GPS system reacts to that depends on the software built into the GPS receiver. If the system fails, the pilots will have to rely on older systems like VOR to navigate. But ADS-B will have even more problems. An aircraft ADS-B system needs position data to operate.  If you can’t transmit your position information, air traffic controllers need to rely on old fashioned radar to determine position. All of this adds up to a safety of flight problem, which means grounding the aircraft.

Digging through canceled flight lists, one can glean which aircraft are having issues. From the early reports, it seems like Bombardier CRJ 700 and 900 have problems. Folks on Airliners.net are speculating that any aircraft with Rockwell Collins flight management systems are having problems.

This is not a small issue, there are hundreds or thousands of canceled flights. The FAA set up a teleconference to assess the issue. Since then, the FAA has issued a blanket waiver to all affected flights. They can fly, but only up to 28,000 feet.

This is a developing story, and we’ll be keeping an eye on it. Seeing how the industry handles major problems is always educational, and there will be much to learn in the coming days.