You Can Now Buy a Practical Gauss Gun

Occasionally we come across a piece of information which reminds us that, while flying cars are still nowhere to be found, we’re definitely living in the future. Usually it’s about some new application of artificial intelligence, or maybe another success in the rapidly developing field of private spaceflight. But sometimes it’s when you look at a website and say to yourself: “Oh cool, they have 1.5kW electromagnetic accelerators in stock.”

Arcflash Labs, a partnership between [David Wirth] and [Jason Murray], have put their EMG-01A Gauss gun up for sale for anyone who’s brave enough and willing to put down $1,000 USD on what’s essentially a high-tech BB gun. The creators claim it obtains an efficiency of 6.5% out of its RC-style 6S LiPo battery pack, which allows it to fire over 100 rounds before needing to be recharged. Firing 4.6g steel projectiles at a rather leisurely 45 m/s, this futuristic weapon would be more of a match for tin cans than invading alien forces, but at least you’ll be blasting those cans from a position of supreme technical superiority.

The EMG-01A builds on the work of the team’s previous experiments, such as the semi-automatic railgun we covered last year. They’ve made the device much smaller and lighter than their previous guns, as well as worked on making them safer and more reliable. That said, the page for the EMG-01A has a number of warnings and caveats that you won’t see on the back of a Red Ryder BB gun box; it’s certainly not a toy, and anyone who takes ownership of one needs to be respectful of the responsibility they’re taking on.

Speaking of which, who can actually buy one of these things? The Arcflash Labs site makes it clear they will only ship to the United States, and further gives a list of states and cities were they can’t send a completed gun. Essentially they are following the same laws and guidelines used for shipping air guns within the US, as they believe that’s a fair classification for their electromagnetic guns. Whether or not the ATF feels the same way is unclear, and it should be interesting to see what kind of legal response there may be if Arcflash Labs starts moving enough units.

If you’d like to wage warfare on your recyclables without spending quite so much cash, you can always build your own for less. Or nearly nothing, if you want to go the full MacGyver route.

Continue reading “You Can Now Buy a Practical Gauss Gun”

Semi-Automatic Rail Gun is a Laptop Killer

It’s huge, it’s unwieldy, and it takes 45 seconds to shoot all three rounds in its magazine. But it’s a legitimate semi-automatic railgun, and it’s pretty awesome.

Yes, it has its limits, but every new technology does, especially totally home-brew builds like this. The aptly named [NSA_listbot] has been putting a lot of work into his railgun, and this is but the most recent product of an iterative design cycle.

The principle is similar to other railguns we’ve featured before, which accelerate projectiles using rapidly pulsed electromagnets. The features list in the video below reads like a spec for a top-secret military project: field-augmented circular bore, 4.5kJ capacitor bank, and a custom Arduino Nano that’s hardened against the huge electromagnetic pulse (EMP) generated by the coils. But the interesting bits are in the mechanical design, which had to depart from standard firearms designs to handle the caseless 6 mm projectiles. The resulting receiver and magazines are entirely 3D printed. Although it packs a wallop, its cyclic rate of fire is painfully slow. We expect that’ll improve as battery and capacitor technology catches up, though.

Want to check out some more railgun builds? We’ve got them in spades — from one with $50,000 worth of caps to a wrist-mounted web-slinger.

Continue reading “Semi-Automatic Rail Gun is a Laptop Killer”

Making a Coil Gun Without Giant Caps

Whenever we see a coil gun project on the Internet, it seems to involve a bank of huge capacitors. [miroslavus] took a different approach with his gun–he wanted his project to be built without those monster caps.

It’s powered by quadcopter LiPo batteries, 2x 1400 MaH drone batteries wired up in series and triggering 21SWG copper coils that [miroslavus] created with the help of a custom 3D-printed winding rig he designed. The rigs have ridges to help you lay the coils down neatly, and they also have mounts for photodiodes, ensuring the gun knows when it’s loaded.

When triggered, the Arduino Nano activates a pair of IRF3205 MOSFETS with logic signals stepped up to 20V, shooting lengths of 7mm or 8mm steel rod. The gun isn’t exactly creating plasma discharges with its launches, but it’s a fascinating project nonetheless.

Check out the disposable camera coil gun project and the coil guns for newbies posts we previously ran.

Continue reading “Making a Coil Gun Without Giant Caps”

DIY Coil Gun Redux: Life Really is Easier with Arduino

A common complaint in the comments of many a Hackaday project is: Why did they use a microcontroller? It’s easy to Monday morning quarterback someone else’s design, but it’s rare to see the OP come back and actually prove that a microcontroller was the best choice. So when [GreatScott] rebuilt his recent DIY coil gun with discrete logic, we just had to get the word out.

You’ll recall from the original build that [GreatScott] was not attempting to build a brick-wall blasting electromagnetic rifle. His build was more about exploring the concepts and working up a viable control mechanism for a small coil gun, and as such he chose an Arduino to rapidly prototype his control circuit. But when taken to task for that design choice, he rose to the challenge and designed a controller using discrete NAND and NOR gates, some RS latches, and a couple of comparators. The basic control circuit was simple, but too simple for safety — a projectile stuck in the barrel could leave a coil energized indefinitely, leading to damage. What took a line of code in the Arduino sketch to fix required an additional comparator stage and an RC network to build a timer to deenergize the coil automatically. In the end the breadboarded circuit did the job, but implementing it would have required twice the space of the Arduino while offering none of the flexibility.

Not every project deserves an Arduino, and sometimes it’s pretty clear the builder either took the easy way out or was using the only trick in his or her book. Hats off to [GreatScott] for not only having the guts to justify his design, but also proving that he has the discrete logic chops to pull it off.

Continue reading “DIY Coil Gun Redux: Life Really is Easier with Arduino”

Coil Gun for Newbies: Learning Electromagnetic Propulsion

There’s something attractive about coil guns, especially big ones. It’s probably the danger; between the charge stored in banks of capacitors and the flying projectiles, big coil guns can be lethal to experiment with. But there is a lot to be learned from how coil guns work, especially if you build this 3D-printed entry-level coil gun.

For the coil gun newbie, [Great Scott] does a fantastic job of explaining the basics. Pulsing the coil at just the right time will suck a ferromagnetic projectile into the coil core and let momentum fling it out, and multiple coils used correclty improve performance.

His gun is a simple pistol design with two coils, optical sensors to tell when the projectile is centered in each coil, and an Arduino to coordinate everything. The results are not spectacular — he uses only a modest amount of current — but the gun still works. [Great Scott] points out how a capacitor bank could be used to increase the current, but for the sake of keeping it simple he leaves that as an exercise for the builder.

Many coil gun and rail gun builds have made it to our pages over the years, including his ridiculously powerful gun that uses a capacitor bank so large it needs its own car. We like this build for its simplicity, its approachability, and the excellent explanation of its function.

Continue reading “Coil Gun for Newbies: Learning Electromagnetic Propulsion”

The Most Powerful DIY Railgun

The US Navy is working on a few railgun projects that will eventually replace the largest guns on the fleet’s cruisers and destroyers. These rail guns will fire a projectile away from the ship at around Mach 7 on a ballistic trajectory to a target one hundred miles away. It’s an even more impressive piece of artillery than a gun with a nuclear warhead, and someday, it will be real.

most-powerful-non-military-railgunUntil then, we’ll have to settle with [Zebralemur]’s DIY mobile railgun. He built this railgun capable of firing aluminum projectiles through pumpkins, cellphones, and into car doors and blocks of ballistics gelatin.

All rail guns need a place to store energy, and in all cases this is a gigantic bank of capacitors. For this project, [Zebralemur] is using fifty-six, 400 Volt, 6000 microfarad caps. The MSRP for these caps would be about $50,000 total, but somehow – probably a surplus store – [Zebralemur] picked them up for $2,400.

These caps are just the power supply for the rail gun, and aren’t part of the structure of this already large, 250 pound gun. Luckily, with the seats down in [Zebralemur]’s car, they fit in the back of his hatchback.

These caps are charged by a bunch of 9V batteries stuck end to end. When the caps are charged, all the power is dumped into two copper bars in the gun, accelerating the aluminum projectile to speeds fast enough to kill. It’s an incredible build, but something that should not be attempted by anyone. Although this does seem to be the year that all danger seekers are busting out their electromagnetic projection flingers.

Continue reading “The Most Powerful DIY Railgun”

A full-auto Gauss gun probably won’t hurt much

While it may only be able to shoot a few cans right now, we certainly wouldn’t want to be in front of [Jason]’s fully automatic Gauss gun capable of firing 15 steel bolts from its magazine in less than two seconds.

The bolts are fired from the gun with a linear motor. [Jason] is using eight coils along the length of his barrel, each one controlled by an IGBT. These are powered by two 22 Volt 3600mAh LiPo battery packs.

As for the mechanical portion of the build, the bolts fired from this gun are actually 6.5mm nails, cut off and sharpened. These are chambered from a spring-loaded magazine, with each new bolt put into the breech with a small solenoid retracting for an instant. The frame is constructed from a square aluminum tube with additional pieces cut with a hacksaw and bent with an impromptu bench vise brake. If ever there was a person deserving of a bench top shear/brake, [Jason] is the man.

The muzzle velocity of these bolts is about 40 m/s, with a muzzle energy that’s about 3% of a .22 LR round. Not deadly, but more than enough for picking off a few cans and bottles in a garage. You can see the video of this futuristic Gauss machine gun below.

Continue reading “A full-auto Gauss gun probably won’t hurt much”