Hot Wire Foam Cutter Does Circles, Too

Foam is all kinds of useful, but trying to cut it with scissors or a serrated plastic knife is usually an exercise in futility. What you really need is a hot wire for nice clean cuts. [Elite Worm] built a hot wire foam cutter that can cut any type of foam with ease, be it Styrofoam or grey craft foam.

There are a ton of ways to heat up a taut piece of nichrome wire, but few of them are as good looking as this one. [Elite Worm] designed and printed a table with an adjustable fence so it can be used like a table saw. There is also a circle-cutting jig that looks really handy.

This design uses a 12 V power regulator to heat up a piece of tension-adjustable nichrome wire for buttery smooth cuts. This thing looks fantastic all the way down to the cable management scheme. All the files are available on Thingiverse if you want to build one for yourself, but you’ll need to use something other than PLA.

This wire cutter is pretty versatile, but you could go even smaller with a handheld version, or build a larger, CNC-based machine.

Continue reading “Hot Wire Foam Cutter Does Circles, Too”

Seeing The Skill Is Better Than Seeing The Project

Pulling off a flashy project that gets the viral-media hug of widespread approval feels great. Getting there is no easy path to walk and often times the craft that went into a finished project doesn’t even take the back seat but gets no mention at all. Often I find I’m more impressed by — or a least my attention is more strongly captured by — the skills put on display as prominently as the finished build.

Case-in-point this week comes from the model railroad work of [Diorama111]. Seeing an OLED screen in the nose of an HO scale locomotive just like the real-life version is impressive, but how many people missed the one-off soldering masterpiece that went into this one? You’ll marvel at the SMD techniques used with through-hole protoboard on this one.

Occasionally we do get to look over the shoulder of the master as decades of skills are shared for the purpose of passing them on. So was the case back in May when we watched as [Leo] walked through his tips and tricks for prototyping at the electronics bench. This included a lot of non-obvious but clever stuff; tips on working with copper tape for solder buses, using Teflon tubing with bare wire instead of stripping PVC-insulated wire, and a deep dive into copper clad prototyping.

So remember all of us hardware geeks when you look to tell the story of your project. We want to know how it was done at least as much as what was done. There was a time when electronic designers were a separate work group from electronic technicians (and wow, those technicians were in a league of their own). These days we all have that technician hat hanging on our workbenches and I’m always interested in packing in yet another unlearnt skill. Throw us a bone!

Hammer Seeks Nail

People sometimes say “when you have a hammer, everything looks like a nail” as if that were a bad thing. Hitting up Wikipedia, they’re calling it the Law of the Instrument or Maslow’s Hammer and calling it a cognitive bias. But I like hammers…

I’m working on a new tool, a four-axis hot-wire foam cutter based roughly on this design, but built out of stuff in my basement so far. I want it primarily to turn out wings for RC airplanes so that I can play around with airfoils and construction methods and so on. But halfway through building this new “hammer”, I’m already getting funny ideas of other projects that could be built with it. Classic nail-seeking behavior.

And some of these thoughts are making me reconsider the design of my hammer. I originally wanted to build it low, because it’s not likely that I’ll ever want to cut wing sections taller than 50 mm or so. But as soon as cutting out giant letters to decorate my son’s room, or maybe parts for a boat hull enter my mind, that means a significantly taller cutter, with ensuing complications.

So here I am suffering simultaneously from Maslow’s Hammer and scope creep, but I’m not sad about either of these “ills”. Playing with a couple manual prototypes for the CNC hot-wire cutter has expanded my design vocabulary; I’ve thought of a couple cool projects that I simply wouldn’t have had the mental map for before. Having tools expands the possible ways you can build, cognitive bias or not.

One person’s scope creep is another’s “fully realizing the potential of a project”. I’m pretty sure that I’ll build a version two of this machine anyway, so maybe it’s not a big deal if the first draft were height-limited, but the process of thinking through the height problem has actually lead me to a better design even for the short cutter. (Tension provided by an external bow instead of born by the vertical CNC towers. I’ll write the project up when I’m done. But that’s not the point.)

Maybe instead of lamenting Maslow’s cognitive bias, we should be celebrating the other side of the same coin: that nails are tremendously useful, and that the simple fact of having a hammer can lead you to fully appreciate them, and in turn expand what you’re capable of. As for scope creep? As long as I get the project done over my vacation next week, all’s well, right?

Cheap, Dirty And Perfect V-Groove Foam Cutter

If the only tool you have is a hammer, everything looks like a nail. Conversely, if you have the right tool for every job, it makes the difference between pro and amateur. [ftregan] needs to cut perfect V-grooves in foam for many of his projects, especially building RC planes. He wasn’t too satisfied with the results using his Xacto knife. And a proper tool was going to set him back by almost $25, but following that example he built his own version of the tool for much less.

Two pieces of wood cut at a 45 degree angle are held between two flat support pieces. A pair of regular shaving blades form the cutting elements. While it looks simple, it’s important to get the angles and blade directions correct. A central wooden wedge holds the two blades in place. He also added a small guide marker that let’s you cut precise straight grooves. [ftregan] built the tool to allow cutting 6mm thick foam but given that it’s so quick and cheap to build, we guess it’s easy to make a few of these to allow cutting different thicknesses of foam. We’re sure that many of you will find different or better ways of doing this, but considering [ftregan] spent just 15 minutes cooking this up, it’s not too bad, especially since the results are mighty good.

Another method of cutting foam is with hot wire. Check out this DIY Foam Cutter that we featured earlier.

Not Having The Room Isn’t A Good Reason To Not Have A CNC Router Anymore

PhlatPrinter CNC Machine

Typically, CNC Machines take up a larger footprint than that of the raw material it is cutting. The size of such a machine may have prevented interested makers/hackers from buying or building one for themselves. If you are one of those people then you’d be interested in [Fly3DMon’s] series of CNC Router projects called PhlatPrinter.

A typical CNC Router has a bed that the work piece is mounted to and that work piece stays stationary. The tool then moves in 3 axes, removing material, leaving behind a finished part. The PhlatPrinter works more like a large format plotter, where the work piece is moved back and forth via rollers while the tool only moves in 2 directions. What this allows is a CNC Machine that takes up very little floor space when not in use that can handle any length of material!

Continue reading “Not Having The Room Isn’t A Good Reason To Not Have A CNC Router Anymore”

DIY Foam Cutter Makes It Too Easy

Cutting foam is pretty tricky without a hot wire cutter. Don’t have one? Well, lucky for you, [Darcy Whyte] has a guide on how to make one. It takes just over an hour to build, and it costs next to nothing in supplies!

[Darcy] is using an old 9V power wart that he had lying around, but you can probably use any DC power supply. He designed the frame in SketchUp and cut it out with his CNC router, although a saw will work just as well for MDF. A piece of 40 gauge nickel chromium wire was strung taught between two 1/4-20 bolts, with one held back by a spring. The spring acts as a safeguard to prevent snapping the wire during overly aggressive cuts. This may be a simple build, but it does produce a handy tool.

[Darcy] demonstrates cutting foam with his creation in a video after the break. We think he could cut thin plastic with it as well—modify your 3D prints, anyone?—though he may need to crank up the voltage a bit.

Continue reading “DIY Foam Cutter Makes It Too Easy”