“Drones” Endanger Airborne Wildfire Fighting

usdaThere is no denying that personal drones are in the public eye these days. Unfortunately they tend to receive more negative press than positive. This past weekend, there were news reports of a wildfire in California. Efforts to fight the fire were hampered when no less than five drones were spotted flying in the area. Some reports even stated that two of the drones followed the firefighting aircraft as they returned to local airports. This is the fourth time this month firefighting planes have been grounded due to unmanned aircraft in the area. It’s not a new problem either, I’ve subscribed to a google alert on the word “Drone” for over a year now, and it is rare for a week to go by without a hobby drone flying somewhere they shouldn’t.

The waters are muddied by the fact that mass media loves a good drone story. Any pilotless vehicle is now a drone, much to the chagrin of radio control enthusiasts who were flying before the Wright brothers. In this case there were two fields relatively close to the action – Victor Valley R/C Park, about 10 miles away, and the Cajun Pass slope flying field, which overlooks the section of I-15 that burned. There are claims on the various R/C forums and subreddits that it may have been members from either of those groups who were mistaken as drones in the flight path. Realistically though, Victor Valley is too far away. Furthermore, anyone at the Cajun pass flying site would have been fearing for their own safety. Access requires a drive through 3 miles of dirt road just to reach the site. Not a place you’d want to be trapped by a wildfire for sure. Who or whatever was flying that day is apparently lying low for the moment – but the problem persists.

Rules and Regulations

In the USA, the FAA rules are (finally) relatively clear for recreational drone operations. The layman version can be found on the knowbeforeyoufly.org website, which was put together by the Academy of Model Aeronautics (AMA), The Association for Unmanned Vehicle Systems International (AUVSI), and other groups in partnership with the FAA.

Continue reading ““Drones” Endanger Airborne Wildfire Fighting”

Hackaday Prize Entry: Tracking Rhinos With UAVs

For his Hackaday Prize project, [tlankford01] is using RC planes and UAVs as an anti-poaching system for rhinos and elephants. It’s a laudable goal for sure, but the conditions of this use case make for some very interesting engineering challenges.

The design goals [tlandford] has set are relatively simple for a bush plane, but building a plane that can fly 200km with a 6kg payload and return to base is a challenge that isn’t usually taken up by RC enthusiasts. For this project, [tlandford] is using an entirely 3D printed airframe, with living hinges printed right into the control surfaces. That in itself is pushing the limits of amateur airframes, but [tlandford] isn’t stopping there.

This UAV system will be completely automated, with a single ground control system taking care of controlling a swarm of planes, pointing a tracking antenna, and connecting to the Internet for observation or control from anywhere in the world.

The project that has seen a lot of improvement since it was entered in last year’s Hackaday Prize. The addition of a completely 3D printed airframe is a big one, and replacing the RVJet with something that looks a bit more like a glider should increase the loiter times over the target. There’s a video of the Icarus flying available below. If you also have a UAV project entered in The Hackaday Prize, there is now one obvious choice of what music you should use.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: Tracking Rhinos With UAVs”

Ducted Fan Drone Flies

A while back, we wrote about the ducted fan, single rotor, VTOL drone that [Armin Strobel] was working on. It wasn’t quite finished then, and hadn’t got off the ground yet. He’s posted an update, and from the looks of it, he’s made tons of progress, including a first flight with successful take-off and landing.

The successful flight was no coincidence. Tuning any kind of ‘copter is a tricky business. Handling them manually during testing could be outright dangerous. So he built two different test-beds from pieces of wood, some 3D printed parts and bearings. One lets him mount the drone and tune its pitch (and roll), while the other lets him tune the yaw parameters. And just like they do in wind tunnel testing, he fixed short pieces of yarn at various points on the air frame to check for turbulence. Doing this also gave him some insight into how he could improve the 3D printed air-frame in the next iteration. He repeated the tests on the two test beds, going back and forth to make sure the tuning parameters were not interfering with each other. He also modified the landing gear to improve stability during take-off and landing and to prevent tipping. [Armin] is using the PixHawk PX4 for flight control and a BeagleBone Black for higher level functions and control.

Once the first flight showed that the drone could do stable flight, he attached a Go-Pro and recorded some nice video on subsequent flights. The next steps are to fine tune the flight control parameters to ensure stable hovering with position hold and way point following. He may also 3D print an improved air-frame. For details about the build, check out our earlier blog post on the Ducted Fan Drone. Check out the two videos below – one showing the first flight of the Drone, and the other one about the test beds being used for tuning.

Continue reading “Ducted Fan Drone Flies”

Autonomous Drones Now Carry People

There are a handful of companies trying to build the first autonomous car, but this project makes us think that they all might be heading in the wrong direction. [Thorstin] wanted to use a quadcopter to transport people, and built a working prototype of an autonomous quadcopter-esque vehicle that is actually capable of lifting a person.

The device isn’t actually a quadcopter anymore; that wouldn’t be able to generate enough lift. It has sixteen rotors in total, making it a sexdecacopter (we suppose). This setup generates 282 pounds of static thrust, which as the video below shows, is enough to lift an average person off of the ground along with the aluminum alloy frame and all of the lithium ion batteries used to provide power to all of those motors.

With the PID control system in place, the device is ready for takeoff! We like hobby projects that suddenly become life-sized and rideable, and we hope to see this one fully autonomous at some point too. Maybe soon we’ll see people ferried from waypoint to waypoint instead of being driven around in their ground-bound autonomous cars.

Continue reading “Autonomous Drones Now Carry People”

drone racers

The Shady World Of Drone Racing

No one noticed the two men in the alley as the darkness of midnight approached – their long, black trench coats acting like a soldier’s camouflage.

“You got the goods?”

“Yeah, these are hot man…super fast..check this…”

The bark of a police siren broke their whispered conversation like a shattering glass, causing the two men to briefly freeze in their steps.

“Johnny B. got busted last week…did you hear?”

“No way man! What he get busted for?”

“Drone racing man…drone racing.”

Deep within the shadows of abandoned warehouses and dilapidated factories on the outskirts of Australian suburbia, the telltale buzz of numerous drones can be heard. Zipping to and fro at speeds upwards of 60km/h, these drones are not just flying. They’re racing each other. The operators use specialized FPV goggles that allow them to see the raceway in real time. This method, unfortunately, puts them on the wrong side of the law.

The dated laws governing drones in Australia are similar to those in the US, which were written for the radio controlled plane industry. While they technically forbid any flying outside of line-of-site, the Australian Civil Aviation Authority seems to be OK with the drone racing so long as it’s done indoors and poses no risk to people or property.

Know of any drone racing in your country? Is it legal? Do people do it anyway? Let us know in the comments.

The Trials Of Quadcopter Graffiti

Last April, graffiti artist [KATSU] strapped a can of red spray paint to a Phantom quadcopter, flew it up against one of the largest billboards in New York City, and pressed a button. Now, [KATSU], [Dan Moore], and Adafruit’s [Becky Stern] are trying to perfect a flying can of spraypaint, and they’ve met with some success and surely many broken props.

The team used an Iris+ for this project instead of the Phantom used by [KATSU] earlier this year, but the principle of the entire endeavor remains the same: fly up against a wall, flick a switch, and watch paint come out of a spray gun. To get the can spraying paint, they modified a can gun to accept a micro servo. This servo is connected to the trigger mechanism of the can gun, and the entire unit is slung under the quad.

Getting a quadcopter to put paint exactly where you want it is hard, even indoors. Luckily, the Pixhawk inside the Iris has sensor inputs and an ‘altitude hold’ mode that can accept a sonar sensor and can be programmed to stay a set distance away from a wall. These sensors are susceptible to interference, and a proper, shielded cable had to be made, but the sensor did work.

Flying the quad did not go as smoothly. The swinging can of paint changes the center of gravity of the quad, and even flying indoors proved difficult. Still, if you’d like to give it a go, [Becky] put up the instructions for their build. You can see the hover attempts in the video below.

Continue reading “The Trials Of Quadcopter Graffiti”

Ducted Fan Drone Uses 1 Rotor For VTOL

Multi-rotor fixed-pitch aircraft – quad, hexa, octa copters – are the current flavor of the season with hobby and amateur flight enthusiasts. The serious aero-modeling folks prefer their variable-pitch, single rotor heli’s. Defense and military folks, on the other hand, opt for a fixed wing UAV design that needs a launch mechanism to get airborne. A different approach to flight is the ducted fan, vertical take-off and landing UAV. [Armin Strobel] has been working on just such a design since 2001. However, it wasn’t until recent advances in rapid-prototyping such as 3D printing and availability of small, powerful and cheap flight controllers that allowed him to make some progress. His Ducted Fan VTOL UAV uses just such recent technologies.

Ducted fan designs can use either swivelling tilt rotors that allow the craft to transition from vertical flight to horizontal, or movable control surfaces to control thrust. The advantage is that a single propeller can be used if the model is not too big. This, in turn, allows the use of internal combustion engines which cannot be used in multi-rotor craft (well, they’ve proven difficult to use thus far).

[Armin] started this project in 2001 in a configuration where the centre of gravity is located beneath trust vectoring, giving the advantage of stability. Since there were no hobby autopilots available at the time, it was only equipped with one gyroscope and a mechanical mixer to control the vehicle around the vertical axis. Unfortunately, the craft was destroyed during the first flight, after having managed a short flight, and he stopped further work on it – until now. To start with, he built his own 3D printer – a delta design with a big build volume of 400mm3. 3D printing allowed him to build a structure which already included all the necessary mount points and supports needed to fix servos and other components. The in-fill feature allowed him to make his structure stiff and lightweight too.

Intending to build his own auto-pilot, he experimented with a BeagleBone Black connected to a micro controller to interface with the sensors and actuators. But he wasn’t too happy with initial results, and instead opted to use the PixHawk PX4 auto-pilot system. The UAV is powered by one 3-cell 3500mAh LiPo. The outside diameter of the duct is 30cm (12”), the height is 55cm (22”) and the take-off weight is about 1.2kg (2.6 pound). It has not yet been flown, since he is still waiting for the electronics to arrive, but some bench tests have been conducted with satisfactory results. In the meantime, he is looking to team up with people who share similar interests, so do get in touch with him if this is something up your alley.

If you want to look at other interesting designs, check this UAV that can autonomously transition from quadcopter flight to that of a fixed-wing aircraft or this VTOL airplane / quadcopter mashup.