Will Nickel-Hydrogen Cells Be The Energy Storage Holy Grail?

You may have heard us here remarking in the past, that if we had a pound, dollar, or Euro for every miracle battery technology story we heard that was going to change the world, we would surely be very wealthy by now. It’s certainly been the case that many such pronouncements refer to promising chemistries that turn out only to be realizable in a lab, but here there’s news of one with a bit of pedigree. Nickel hydrogen batteries have a long history of use in space, and there’s a startup producing them now for use on the ground. Could they deliver the energy storage Holy Grail?

The cathode in a nickel-hydrogen battery is formed by nickel hydroxide, and the anode is formed of hydrogen. If a gas as an anode sounds far fetched, we’re guessing that their structure is similar to the zinc-air battery, in which zinc hydroxide forms in a paste of powdered zinc, and works against oxygen from the air over a porous conductive support. What gives them their exciting potential is their ability to take more than 30,000 charge/discharge cycles, and their relative safety when compared to lithium ion cells. Hydrogen in a pressure vessel might not seem the safest of things to have around, but the chemistry is such that as the pressure increases it reacts to form water. The cost of the whole thing is reduced further as new catalysts have replaced the platinum used by NASA on spacecraft.

We really hope that these batteries will be a success, but as always we’ll wait and see before calling it. They may well be competing by then with the next generation of zinc-air cells.

MIT Cracks The Concrete Capacitor

It’s a story we’ve heard so many times over the years: breathless reporting of a new scientific breakthrough that will deliver limitless power, energy storage, or whichever other of humanity’s problems needs solving today. Sadly, they so often fail to make the jump into our daily lives because the reporting glosses over some exotic material that costs a fortune or because there’s a huge issue elsewhere in their makeup. There’s a story from MIT that might just be the real thing, though, as a team from that university claim to have made a viable supercapacitor from materials as simple as cement, carbon black, and a salt solution. Continue reading “MIT Cracks The Concrete Capacitor”

AGES Of Renewable Energy Storage

As society transitions toward renewable energy sources, energy storage inevitably comes to mind. Researchers at the University of Illinois at Urbana-Champaign have found one way to store renewable energy that re-purposes existing fossil fuel infrastructure.

While geothermal electricity generation shows a lot of promise, it’s currently limited to a select few areas where hot rock is close to the Earth’s surface. Advanced Geothermal Energy Storage (AGES) stores energy underground as heat and recovers it later, even in places without high subsurface temperatures. For this study, the researchers located an old oil well and instrumented it with “flow meters, fiber optic
distributed temperature sensing (DTS) cable, surface pressure and temperature gauges, and downhole pressure and temperature gauges to monitor the thermal and hydraulic changes during the injection test.”

This field study found that AGES system efficiency could be as high as 82% and yield an “economically viable” levelized cost of electricity (LCOE) of $0.138/kWh. Using existing deep hole infrastructure speeds up site selection and deployment of AGES when compared to developing on an undisturbed location, making this a very interesting way to deploy grid-scale storage rapidly.

We’ve covered reusing fossil fuel infrastructure before as well as challenges and unusual solutions to the energy transition if you’re looking for more about what might be on a future smart grid.

Battery Engineering Hack Chat Gets Charged Up

Turn the clock back a couple of decades, and the only time the average person would have given much thought to batteries was when the power would go out, and they suddenly needed to juice up their flashlight or portable radio.  But today, high-capacity batteries have become part and parcel to our increasingly digital lifestyle. In fact, there’s an excellent chance the device your reading this on is currently running on battery power, or at least, is capable of it.

So let’s get to know batteries better. What’s the chemical process that allows them to work? For that matter, what even is a battery in the first place?

It’s these questions, and more, that made up this week’s Battery Engineering Hack Chat with Dave Sopchak. Our last Hack Chat of 2022 ended up being one of the longest in recent memory, with the conversation starting over an hour before the scheduled kickoff and running another half hour beyond when emcee Dan Maloney officially made his closing remarks. Not bad for a topic that so often gets taken for granted.

Continue reading “Battery Engineering Hack Chat Gets Charged Up”

Dancers Now Help Power Glasgow Nightclub

Humanity thus far has supplied most of its electricity needs by burning stuff, mostly very old stuff that burns great but is hard to replace. That stuff is getting increasingly expensive, and the pollution is a bother too, so renewable sources of energy are becoming more popular.

While wind or solar power are commonly used at the grid level, one Glasgow nightclub has taken a different tack. It’s capturing energy from its patrons to help keep the lights on.

Continue reading “Dancers Now Help Power Glasgow Nightclub”

Using Phase Change Materials For Energy Storage

Renewable energy sources are becoming increasingly popular. However, such energy can be wasted if an excess is available when it’s not yet needed. A particularly relevant example is solar power; solar panels provide most of their output during the day, while often a household’s greatest energy use is at night.

One way to get around this problem is by storing excess energy so that it can be used later. The most common way this is done is with large batteries, however, it’s not the only game in town. Phase change materials are proving to be a useful tool to store excess energy and recover it later – storing energy not as electricity, but as heat. Let’s take a look at how the technology works, and some of its most useful applications. Continue reading “Using Phase Change Materials For Energy Storage”

Companies Have New Take On Old Energy Storage Tech

According to Spectrum, several companies are poised to make a splash storing energy with gravity. That sounds fancy and high tech at first, but is it, really? Sure, we usually think of energy storage as some sort of battery, but there are many energy storage systems that use water falling, for example, which is almost what this new technology is all about. Almost, since instead of water these new systems move around multi-ton blocks.

The idea itself is nothing new. You probably learned in high school that you have kinetic energy when a rock rolls down a hill, but a rock sitting on a mountain immobile has potential energy. These systems use the same idea. Moving the “rock” up stores energy and letting it fall releases the same energy. The big difference between the systems is what “up” means.

For Swiss company Energy Vault, the 35 metric ton bricks rise into the air manipulated by towers that look like alien construction cranes. To store energy, the crane builds a tower of bricks around itself. When the bricks return to the ground, they form a lower ring around the tower.

Continue reading “Companies Have New Take On Old Energy Storage Tech”