Rocking Playmobil Wedding

Many of us have put our making/hacking/building skills to use as a favor for our friends and family. [Boris Werner] is no different, he set about creating a music festival stage with Playmobil figures and parts for a couple of friends who were getting married. The miniature performers are 1/24 scale models of the forming family. The bride and groom are on guitar and vocals while junior drums.

Turning children’s toys into a wedding-worthy gift isn’t easy but the level of detail [Boris Werner] used is something we can all learn from. The video after the break does a great job of showing just how many cool synchronized lighting features can be crammed into a tiny stage in the flavor of a real show and often using genuine Playmobil parts. Automation was a mix of MOSFET controlled LEDs for the stage lighting, addressable light rings behind the curtain, a disco ball with a stepper motor and music, all controlled by an Arduino.

Unless you are some kind of Playmobil purist, this is way cooler than anything straight out of the box. This is the first mention of Playmobil on Hackaday but miniatures are hardly a new subject like this similarly scaled space sedan.

Continue reading “Rocking Playmobil Wedding”

Daunting Interactive LED Dancefloor Build is Huge Win

If you’ve ever thought about having a light-up dance floor at an event, the chances are you will have been shocked at the rental cost. Doing your best impression of a young John Travolta in Saturday Night Fever doesn’t come cheap, it seems. When faced with this problem before the Furnal Equinox 2017 convention, [Av] and friends decided instead to build their own LED-lit floor.

Their design and build is shown in the video we’ve placed below the break, and though each individual light unit is straightforward it is the scale of the project and its epic build that makes it a very impressive achievement. There are 64 panels of 4 light cells, giving a total of 256 cells and 7680 RGB LEDs arranged as 2560 pixels. Each panel has a shift register PCB interfacing LEDs to the Teensy that controls the floor, and there are also microswitches talking to an Arduino Mega which provides the floor with interactivity. It’s hard to imaging this build would be possible without the people numerous who pitched in at the Toronto Hacklab for the assembly process.

The resulting 17 foot square dancefloor is a work of art, with custom programmed graphics responding to dancers moves, and even a few games along the lines of Dance Dance Revolution built in. After watching the video below, how many of you will secretly want one?

Continue reading “Daunting Interactive LED Dancefloor Build is Huge Win”

SpotMini Struts Its Stuff

Boston Dynamics, the lauded robotics company famed for its ‘Big Dog’ robot and other machines which push mechanical dexterity to impressive limits have produced a smaller version of their ‘Spot’ robot dubbed ‘SpotMini’.

A lightweight at 55-65 lbs, this quiet, all-electric robot lasts 90 minutes on a full charge and boasts partial autonomy — notably in navigation thanks to proprioception sensors in the limbs. SpotMini’s most striking features are its sleek new profile and manipulator arm, showing off this huge upgrade by loading a glass into a dishwasher and taking out some recycling.

Robots are prone to failure, however, so it’s good to know that our future overlords are just as susceptible to slipping on banana peels as we humans are.

Continue reading “SpotMini Struts Its Stuff”

The Unity of Dance and Architecture

In an ambitious and ingenious blend of mechanical construction and the art of dance, [Syuko Kato] and [Vincent Huyghe] from The Bartlett School of Architecture’s Interactive Architecture Lab have designed a robotic system that creates structures from a dancer’s movements that they have christened Fabricating Performance.

A camera records the dancer’s movements, which are then analyzed and used to direct an industrial robot arm and an industrial CNC pipe bending machine to construct spatial artifacts. This creates a feedback loop — dance movements create architecture that becomes part of the performance which in turn interacts with the dancer. [Huyghe] suggests an ideal wherein an array of metal manipulating robots would be able to keep up with the movements of the performer and create a unique, fluid, and dynamic experience. This opens up some seriously cool concepts for performance art.

Continue reading “The Unity of Dance and Architecture”

No Frame Buffer for FPGA VGA Graphics

Usually, when you think of driving a VGA–in software or hardware–you think of using a frame buffer. The frame buffer is usually dual port RAM. One hardware or software process fills in the RAM and another process pulls the data out at the right rate and sends it to the VGA display (usually through a digital to analog converter).

[Connor Archard] and [Noah Levy] wanted to do some music processing with a DE2-115 FPGA board. To drive the VGA display, they took a novel approach. Instead of a frame buffer, they use the FPGA to compute each pixel’s data in real-time.

Continue reading “No Frame Buffer for FPGA VGA Graphics”

A Structural PVC Cyr Wheel

PVC is a great building material that can be used for everything from yurts and geodesic domes to pressure vessels. One thing we haven’t seen a lot of is bending PVC pipe. [Lou] wanted to build a Cyr wheel for his daughter, and instead of shelling out five hundred big ones for an aluminum version, he build one out of PVC using techniques usually reserved for woodworking.

A Cyr Wheel is usually a large aluminum hoop built for acrobatic performances. These performances are pretty impressive and look like a lot of fun, but the wheels themselves are rather expensive. Figuring PVC was a good enough solution, [Lou] built his own Cyr wheel for $50 in materials.

The build started off by laying out a jig on the floor. Two sheets of plywood were laid out, a radius for the wheel traced, and a bunch of blocks were glued to the perimeter of this mold. With the mold in place, a few pieces of PVC were flexed into position, clamped, heated with a hair dryer to relieve stress, and glued to a second course of PVC.

The process [Lou] used to build his Cyr wheel isn’t that different from extremely common woodworking techniques. In fact, it wouldn’t be unreasonable for [Lou] to build a wooden Cyr wheel with the same jig. We’re wondering how well this project will stand up to abuse, so if you have any insight to the uses of structural PVC drop a note in the comments.

Visualizing Ballet Movements with E-Traces

When we think of wearable technologies, ballet shoes aren’t the first devices that come to mind. In fact, the E-Traces pointé shoes by [Lesia Trubat] may be the first ever “connected ballet shoe.” This project captures the movement and pressure of the dancer’s feet and provides this data to a phone over Bluetooth.

The shoes are based on the Lilypad Arduino clone, which is designed for sewing into wearables. It appears that 3 force sensitive resistors are used as analog pressure sensors, measuring the force applied on the ground by the dancer’s feet. A Lilypad Accelerometer measures the acceleration of the feet.

This data is combined in an app running on an iPhone, which allows the dancer to “draw” patterns based on their dance movements. This creates a video of the motion based on the dance performed, and also collects data that can be used to analyze the dance movements after the fact.

While these shoes are focused on ballet, [Lesia] points out that the same technique could be extended to other forms of dance for both training and visualization purposes.