Hackaday Links Column Banner

Hackaday Links: July 30, 2023

A couple of weeks ago, we noted with interest that the space shuttle Endeavour (OV85) would be set up as a full-stack launch configuration display, complete with external fuel tank and solid rocket boosters. We predicted that this would result in some interesting engineering, not least of which will be making the entire 20-story stack safe from seismic activity. Looks like we were right on all counts, with this story about the foundation upon which the display will stand, which has been under construction for quite a while now. The base has six seismic isolators that support the 2.4-m thick slab of reinforced concrete that will serve as a perch for the full stack. The 1,800-ton slab will be able to move a meter or so from its resting position during earthquakes. Or perhaps more accurately, the foundation will allow Los Angeles to move as much as it wants while Endeavour rides it out.

If like us you’re worried that seismic loads are vastly different than the loads the spacecraft was actually designed for, relax — it turns out that the flight loads are far in excess of predicted loads from seismic stress. The plan is to build the booster stacks first — the aft skirts, which will support the entire stack, were just bolted in place — then lift the external tank in place between the boosters, and finally hoist the actual orbiter into place. After the stack is complete, the rest of the building will be built around it. We’re really looking forward to seeing some video on this project.

Continue reading “Hackaday Links: July 30, 2023”

The Tasmanian Tiger’s Comeback Tour, Powered By Science

Scientists estimate that approximately 900 species have gone extinct in the last five centuries alone, to say nothing of the thousands or millions that vanished from life in the billions of years before that.

Conventional wisdom states that once an animal has gone extinct, it’s gone forever. However, a team from the University of Melbourne hopes to change all that, with their new project aiming to bring the Tasmanian Tiger back to life.
Continue reading “The Tasmanian Tiger’s Comeback Tour, Powered By Science”

Arachnid Ale Uses Yeast To Make Spider Silk

Many people who read Hackaday hold the title of “Webmaster” but [The Thought Emporium] is after slightly different credentials with the same title. He aims to modify a strain of yeast to produce spider silk. Charlotte’s Web didn’t go into great detail about the different types of silk that a spider can produce, but the video and screencap after the break give a rundown of how spiders make different types of silk, and that each species of spider makes a unique silk. For this experiment, the desired silk is “beta sheets” which the video explains are hard and strong.

Some of the points mentioned in the video rely on things previously mentioned in other videos, but if you are the type of person excited by genetic modifications or using modified yeast to produce something made by another lifeform, you will probably be just fine. This is one of the most technical videos made by [The Thought Emporium] as he goes into the mechanisms of the modifications he will be making to the yeast. It sounds like a lot of work and the financial benefit of being able to produce spider silk affordably could be great, but in true hacker form, the procedure and results will be made freely available.

For some background into this hacker’s mind, check out how he has hacked his own lactose intolerance and even produced graphene through electrochemical exfoliation.

Continue reading “Arachnid Ale Uses Yeast To Make Spider Silk”

Ctrl-X, Ctrl-V For DNA

Once upon a time, the aspiring nerdling’s gift of choice was the Gilbert chemistry set. Its tiny vials of reagents, rack of test tubes, and instruction book promised endless intellectual stimulation and the possibility of stink bombs on demand. Now a new genetic engineering lab-in-a-box Kickstarter, with all the tools and materials needed to create your own transgenic organisms, may help the young biohacker’s dreams come true.

The Kickstarter has been wildly successful. The initial goal was $1200AUD was met in a day, and currently stands at almost $6200AUD. Despite that success, color me skeptical on this one. Having done way more than my fair share of gene splicing, there seem to be a few critical gaps in this kit. For example, the list of materials for the full kit includes BL21 competent E. coli as the host strain. Those cells are designed to become porous to extracellular DNA when treated with calcium chloride and provided with a heat shock of 42°C. At a minimum I’d think they’d include a thermometer so you can control the heat shock process. Plenty of other steps also need fairly precise incubations, like the digestion and ligation steps needed to get your gene into the host. And exactly what technique you’d be using to harvest DNA from the animal, plant or fungal cells is unclear; the fact that most of the techniques for doing so require special techniques leads me to believe there’s a lot less here than meets the eye.

To be fair, I’ve been off the lab bench for the better part of two decades, and the state of the art has no doubt advanced in that time. There could very well be techniques I’m not familiar with that make the various steps needed to transform a bacterial culture with foreign DNA trivial. It could also be the case that the techniques I used in the lab were optimized for yield and for precise data, while the GlowGene kit provides the materials to get a “good enough” result. I hope so, because a kit like this could really expand the horizons of hackerdom and start getting the biohacking movement going.

[Thanks, Michael!]

Electromagnetic Field Camp

Emf Electromagnetic Field Camp is a three-day camping festival for people with an inquisitive mind or an interest in making things: hackers, geeks, scientists, engineers, artists, and crafters.

There will be people talking about everything from genetic modification to electronics, blacksmithing to high-energy physics, reverse engineering to lock picking, crocheting to carpentry, and quadcopters to beer brewing. If you want to talk, there’ll be space for you to do so, and plenty of people who will want to listen.

EMF is a volunteer effort by a non-profit group, inspired by European and US hacker camps like CCC, HAR, and toorcamp.  This year on Friday 31st August – Sunday 2nd September 2012 Will hold the first Uk meeting of its kind.

Events and activities will run throughout the day and into the evening, everything else (chats, debates, impromptu circus performances, orbital laser launches) will run as long as your collective energy lasts.

The Event is to be held at Pineham Park, Milton Keynes, UK.

As a Hackaday viewer you can get discounted tickets.

[thanks Jonty]

Simulated Annealing

annealing

Here’s an update on our earlier post about genetic programming. Altered Qualia has posted a new implementation of [Ron Alsing]’s idea. It starts with 50 polygons and then randomly changes one parameter with each optimization step. If the the change results in fewer differences from the target image, it’s kept as the new best DNA. This search method is similar to simulated annealing. The image above is the result of 1500 good mutations out of 35900 possible. The implementation lets you choose any image, but smaller means the fitness calculation is faster. It’s written in JavaScript using the <canvas> environment. You’ll definitely get better performance using newer browser builds.

[Original image by R Stevens]

[via Waxy]