A 1/5th scale hydraulic jack model

Miniature Hydraulic Jack Is A Scale Marvel

Most hydraulic jacks are big tools that can lift upwards of 1000 kg but [Maker B]’s is quite a bit smaller than average.

The world’s smallest hydraulic jack is a tiny hand-machined model made out of tiny pieces of iron, brass and copper. But here’s the kicker: It’s a real hydraulic jack with real hydraulic fluid! At 1/5th scale, it obviously isn’t as strong as a full-size jack, but it can still easily lift an impressive 24 soda cans! Switching between the lathe and mill, [Maker B] shows how all the parts of the jack are made from stock metal in detail, and even explains in simple terms how a hydraulic jack works in this masterpiece of a video.

Over the years, we’ve seen plenty of tiny objects cranked out from stock pieces of metal — often bolts. But the fact that the end result here is a working tool, puts it into a decidedly less common niche. Of course, given what we’ve seen from [Maker B] in the past, it’s hardly a surprise.
Continue reading “Miniature Hydraulic Jack Is A Scale Marvel”

Building A Hydraulic Lego Excavator Using Standard Pneumatic Cylinders

Everyone already knows that Lego Technic is pretty rad when it comes to existing, pre-made kits, but there’s also quite a bit of hacking potential left. One such area is the lack of hydraulics in Lego Technic, an egregious oversight that [Brick Technology] simply had to correct. His effort results in a partially hydraulic, fully remote-controlled excavator. Rather than a traditional gear hydraulic pump as you’d expect in a real-life excavator, a custom peristaltic pump is used to move the fluid to the hydraulic cylinders (rams for our British and Oceanic friends).

The undercarriage is (sadly) purely electrical, with a slip-ring providing power to the electric final drives in the tracks, enabling it to spin around endlessly without limitations. Where the hydraulics come into play is in the excavator’s arm, with two hydraulic lift cylinders on the boom, one cylinder to control the stick, and a final cylinder to control the bucket. Rather than a hydraulic switch, the setup is simplified by using a single peristaltic pump per cylinder circuit.

Remote control and power are provided using the rather chonky BuWizz 3.0 Pro, which offers a wireless control link (here controlled using BrickController 2 on Android). Although original Lego cylinders were used, these are only intended for pneumatics, where it’s hoped that the used mixture of water and windscreen wiper fluid will prevent corrosion.

(Thanks to [Keith Olson] for the tip)

Continue reading “Building A Hydraulic Lego Excavator Using Standard Pneumatic Cylinders”

Robot Hand Looks And Acts Like The Real Thing

Throughout history, visions of the future included human-looking robots. These days we have plenty of robots, but they don’t look like people. They look like disembodied arms, cars, and over-sized hockey pucks concealing a vacuum cleaner. Of course there’s still demand for humanoid robots like Commander Data, but there are many challenges: eyes, legs, skin, and hands. A company known as Clone may have the solution for that last item. The Clone Hand is “the most human-level musculoskeletal hand in the world,” according to the company’s website.

The 0.75 kg hand and forearm offer 24 degrees of freedom and two hours of battery life. It sports 37 muscles and carbon fiber bones. The muscle fibers can cycle over 650,000 times. You can watch the hand in action in the video below.

There is a hydraulic pump that the company likens in size to a human heart. The hand can also sense for feedback purposes. If you want to build your own, you’ll have to figure it out yourself. The Clone Hand is proprietary, but it does show what is in the art of the possible. The company claims they cost under $3,000, but it isn’t clear if that’s their cost or a projected future retail price.

Of course, human hands aren’t always the perfect robot manipulator. But when you need a realistic hand, you really need it. We see a lot of attempts at realistic hands, and we have to say they are getting better.

Continue reading “Robot Hand Looks And Acts Like The Real Thing”

Impressive Sawdust Briquette Machine

When you are a life long carpenter with an amazing workshop, you’re going to make a lot of saw dust, and managing its collection and storage poses quite a challenge. [Russ] from [New Yorkshire Workshop] built an impressive Briquette press to handle the problem.

It’s a hydraulic press that ingests  saw dust and spits out compressed briquettes ready for fueling his rocket mass heater. The build starts with a batch of custom, laser cut steel parts received from Fractory. The heart of the machine is a 300 mm stroke hydraulic cylinder with a beefy 40 mm rod. The cylinder had to be taken apart so that the laser cut mounting flanges could be welded, slowly so as not to deform the cylinder. The intake feed tube was cut from a piece of 40 mm bore seamless tube. A window was cut in the feed tube and funnel parts were welded to this cutout. The feed tube assembly is then finished off with a pair of mounting flanges. The feed tube assembly is in turn welded to the main feed plate which will form the base of the saw dust container. The hydraulic cylinder assembly is mated to the feed tube assembly using a set of massive M10 high tensile class 10.9 threaded rods. The push rod is a length of 40 mm diameter mild steel bar stock, coupled to the hydraulic cylinder using a fabricated coupling clamp. On the coupling clamp, he welded another bracket on which a bolt can be screwed on. This bolt helps activate the limit switches that control the movement of the hydraulic cylinder and the feed motor. Continue reading “Impressive Sawdust Briquette Machine”

Scratch-Built RC Excavator Is A Model Making Tour De Force

Some projects just take your breath away with their level of attention to detail. This scratch-built RC-controlled model excavator is not only breathtaking in its detail, but also amazing for the materials and tools used to create it.

We’ve got to be honest, we’ve been keeping an eye on the progress [Vang Hà] has been making on this build for a few weeks now. The first video below is a full tour of the finished project, which is painstakingly faithful to the original, a Caterpiller 390F tracked excavator. As impressive as that is, though, you’ve got to check out the build process that starts with fabricating the tracks in the second video below. The raw material for most of the model is plain gray PVC pipe, which is sliced and diced into flat sheets, cut into tiny pieces using a jury-rigged table saw, and heat formed to create curved pieces. Check out the full playlist for a bounty of fabrication delights, like tiny hinges and working latches.

We can’t possibly heap enough praise onto [Vang Hà] for his craftsmanship, but that’s not all we love about this one. There are tons of helpful tips here, and plenty of food for thought for more practical builds. We’re thinking about that full set of working hydraulic cylinders that operates the boom, the dipper, and the bucket, as well as the servo-operated hydraulic control valves. All of it is made from scratch, of course, and mostly from PVC. Keep that in mind for a project where electric motors or linear actuators just won’t fill the bill.

If this construction technique seems familiar to you, it could because we featured a toolbox made out of similarly processed PVC pipes back in June.

Continue reading “Scratch-Built RC Excavator Is A Model Making Tour De Force”

Building A Heavy-Duty Log Splitter, One Piece At A Time

With temperatures dropping in the Northern Hemisphere, this is the time of year when many people start processing firewood for the coming winter months. For the city folks, that means chopping a tree into logs, and then splitting those logs into something small enough to fit in your wood stove. You can do it all with hand tools, but if you’ve got big enough logs, a powered splitter is a worthy investment.

Unless of course you’re like [Workshop From Scratch], in which case you can craft a powerful splitter from random bits of steel you’ve got laying around your impeccably outfitted shop. Given the incredible forces some parts of the splitter will be exposed to, he really takes his time on this build to make sure everything is bulked up. Add in his legendary attention to detail, and you’ll be watching this one for awhile. Not that we’re complaining.

Fitting the adjustable blade.

Early on it seemed like [Workshop From Scratch] was putting together a fairly simple log splitter, which in the most basic form is nothing more complex than a hydraulic cylinder pushing a log against a triangular piece of metal. But then he starts layering on the special features, such as the small hydraulic cylinder that can raise and lower the splitter’s fearsome looking blade.

There’s also the ladder-like feeder mechanism, which prevents the user from having to lift the log onto the machine manually; just stop the log between the rungs, and let the hydraulics raise the ramp and send the log rolling towards the machine’s hungry maw.

In short, this splitter may be a DIY project, but it’s just as strong and well built as anything on the commercial market. In fact, it’s probably an improvement over what you’d be able to find a the big box retailer. Which shouldn’t come as surprise if you’ve seen some of his previous work.

Continue reading “Building A Heavy-Duty Log Splitter, One Piece At A Time”

Hydraulics Made Simple

Corralling electrons is great and what most of us are pretty good at, but the best projects have some kind of interface to the real world. Often, that involves some sort of fluid such as water or air moving through pipes. If you don’t grasp hydraulics intuitively, [Practical Engineering] has a video you’ll enjoy. It explains how flow and pressure work in pipes.

Granted, not every project deals with piping, but plumbing, sprinkler systems, cooling systems, and even robotics often have elements of hydraulics. In addition, as the video points out, fluid flow in a pipe is very similar to electrical current flowing through wires.

Continue reading “Hydraulics Made Simple”