Hackaday Podcast 069: Calculator Controversy, Socketing SOIC, Metal On The Moon, And Basking In Bench Tools

Hackaday editors Mike Szczys and Elliot Williams march to the beat of the hardware hacking drum as they recount the greatest hacks to hit the ‘net this week. First up: Casio stepped in it with a spurious DMCA takedown notice. There’s a finite matrix of resistors that form a glorious clock now on display at CERN. Will a patio paver solve your 3D printer noise problems? And if you ever build with copper clad, you can’t miss this speedrun of priceless prototyping protips.

Direct download (~65 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 069: Calculator Controversy, Socketing SOIC, Metal On The Moon, And Basking In Bench Tools”

Reverse Engineering The Nintendo Switch Joy-Cons

The Switch is Nintendo’s latest effort in the console world. One of its unique features is the Joy-Cons, a pair of controllers that can either attach directly to the console’s screen or be removed and used individually. But how do they work? [dekuNukem] decided to find out.

The reverse engineering efforts begin with disassembly. Surprisingly, there is no silkscreen present on the board to highlight test points or part numbers. This is likely to conflate intended to stymie community efforts to work with the hardware, as different teams may create their own designations for components. Conversely, the chips inside still have their identifying markings present, which does ease identification somewhat.

There are some interesting choices made Рthe majority of the buttons are scanned in a matrix configuration by the on-board microcontroller, making it harder to spoof button presses. The controllers communicate over Bluetooth, switching to a physical serial connection when attached directly to the screen. This runs at a blistering 3,125,000 BPS after the initial handshake is completed.

Overall it’s a fairly comprehensive reverse engineering effort, and [dekuNukem] has provided excellent detail in the writeup for anyone else looking to get involved. There’s still some work left to do, like investigating the rumble messages, but it’s an excellent start and very comprehensive.

Perhaps you’re more interested in older Nintendo hardware? Check out this comprehensive effort to figure out NES console-to-cartridge security methods.