Screen-Accurate Lightsaber As A Practical Effect

The lightsaber was one of the coolest and most iconic visual effects from the original Star Wars, and people have been trying to get that particular piece of movie magic off the silver screen for about 40 years now. [HeroTech] seems to have cracked the code with their “Impossible Lightsaber”— it’s fully retractable, fully lit, and able to hit things (lightly), all while fitting into a replica prop handle.

The secret is… well, there’s more than one secret, here. The blade itself is made out of a “magician’s cane”, which is a coil of plastic that can spring outwards on demand for magic tricks. Hidden inside of it is a strip of LED lights. Of course one strip of LEDs would not be omnidirectional, and the magician’s cane is pretty floppy, but both of those problems are solved by the same idea: “I’ll try spinning. That’s a good trick.”

The spin-stabilized blade holds up to being waved around much better, and apparently the gyroscopic forces it induces are actually lore-accurate. (Who knew?) Of course fitting a motor to spin the “blade”, and another to winch it back in, along with the circuitry and batteries to drive them was no mean feat. It’s impressive they fit it all inside the replica handle; even more impressive that they fit a speaker so this prop even makes the iconic sound effects. We always wanted to see a stage production of William Shakespeare’s Star Wars, and this gives us verily, a new hope.

[HeroTech] isn’t done yet– while seemingly impossible, this lightsaber isn’t perfect, as it’s not rugged enough for full dueling. It’s also not easy to put together, and apparently can’t handle the delicate attentions of airline baggage handlers. So ruggedization and a bit of design-for-assembly are on the table for the next version. Sadly the project is not open source; they are releasing the build files to subscribers only. Given how much work must have gone into iterating to get to this point, that is disappointing, but understandable. Everybody needs to make a living, after all.

If this project seems familiar, it’s because we featured a much-bulkier previous iteration last year.

You may prefer your lightsabers to match the movie version in effects instead of visuals; if that’s the case, check out this saber that uses HHO to cut through a steel door.

Continue reading “Screen-Accurate Lightsaber As A Practical Effect”

Magic Cane Is The Secret Behind Lightsaber

Everyone has a lightsaber or two lying around the house, but not everyone has a lightsaber that extends and retracts automatically. And that’s because, in the real world, it’s not an easy design challenge. [HeroTech]’s solution for the mechanism is simple and relies on an old magician’s trick: the appearing cane. (Video, embedded below.)

An appearing cane is a tightly coiled up spring steel sheet that springs, violently, to its full length when a pin is released, but they can’t retract while the audience is looking. This is fine for magic tricks, but a lightsaber has to be able to turn off again. Here, an LED strip does double duty as source of glow but also as the cable that extends and retracts the appearing cane spring. A motor and spool to wind up the LED strip takes care of the rest.

There are still a number of to-dos in this early stage prototype, and the one mentioned in the video is a tall order. Since the strip doesn’t illuminate out the sides, the lightsaber has two good viewing angles, and two bad ones. The plan is to rotate the LED strip quickly inside the sheath: an approach that was oddly enough used in the original movie prop, as demonstrated in this documentary. Doing this reliably in an already packed handle is going to be a challenge.

If you’re thinking you’ve seen a magic-cane lightsaber before, well, maybe you saw this video. And if you want a light saber with real lasers, check out this build that brings its own fog machine. Take that, Darth Vader!

Continue reading “Magic Cane Is The Secret Behind Lightsaber”

Sound-Reactive Light Saber Flips Allegiance Via Vowel Sounds

Students [Berk Gokmen] and [Justin Green] developed an RP2040-based LED-illuminated lightsaber as a final project with a bit of a twist. It has two unusual sound-reactive modes: disco mode, and vowel detection mode.

Switching allegiances (or saber color, at least) is only a sound away.

Disco mode alters the color of the saber dynamically in response to incoming sounds. Color and brightness are altered in response to incoming frequencies picked up by the on-board microphone, making a dynamic light show that responds particularly well to music.

The second mode is vowel detection, and changes the lightsaber’s color depending on spoken sounds. The “ee” sound makes the saber red, and the “ah” sound turns it blue. This method requires a lot of processing and filtering, and in the end it works, but is quite dependent on individual speakers for calibration.

The sound functionality centers around FFTs (Fast Fourier Transforms) which are fundamental to processing signals like audio in a meaningful way, and is a method accessible to embedded devices like microcontrollers with ADCs.

The lightsaber is battery-powered and wireless, and there are loads of details about the finer points of the design (including challenges and tradeoffs) on the project page, and the source code is available on GitHub. A video demonstration and walkthrough is embedded below.

Continue reading “Sound-Reactive Light Saber Flips Allegiance Via Vowel Sounds”

Building A Lightsaber And Scoring A World Record, Too

As we all know, the lightsaber is an elegant weapon, for a more civilized age. [Alex Burkan] is doing what he can to bring that technology to fruition, and even secured a Guinness World Record in the process.

Melty melty.

The build relies on an electrolyzer, splitting water into hydrogen and oxygen gas which is stored in a small tank. This gas can then be released and combusted in a burning stream, creating a weapon with a vague resemblance to a movie-spec lightsaber. With the hydrogen torch burning at temperatures of thousands of degrees, it’s hot enough to melt steel just like in the films.

While the concept of operation is simple, actually building such a device in a handheld size is incredibly difficult. [Alex] highlights key features such as the flashback arrestor that stops the gas tank exploding, and the output nozzle that was carefully designed to produce a surprisingly long and stable flame.

The resulting device only burns for 30 seconds, so you’ve only got a short period of time to do what you need to do. However, unlike previous designs we’ve seen, it doesn’t use any external gas bottles and is entirely self-contained, marking an important step forward in this technology. Video after the break.

Continue reading “Building A Lightsaber And Scoring A World Record, Too”

We Would Not Want To Be Stormtroopers Right Now

Humanity is another step closer to a fantasy-accurate lightsaber thanks to Hackaday alumnus [James Hobson] at Hacksmith. Their proto-saber cuts through (cosplay) stormtrooper armor, (foam) walls, and a (legit!) 1/4″ (6.35mm) steel plate. For so many reasons, we want to focus on the blade and handle. (Video, embedded below.)

The blade is a plasma stream designed for glassworking and burns a propane/oxygen mix with almost no residue, but the “blade” stays in a tight cylinder shape. With a custom PCB hosting a mixing controller, the blade extends and retracts like in the movies. The handle is not a technical marvel; it is an artistic wonder and if you want to see some machining eye-candy, check out the first video after the break. The second video demonstrates just how much damage you can do with a 4000° Fahrenheit tube of portable plasma.

You won’t be dueling anyone just yet, since there is no magnetic field shaping the blade like the ones [Lucas] envisioned. Unfortunately, you can’t block anything more substantial than a balloon sword since solid material will pass right through it, but it will suffer a mighty burn in the process. Lightsabers are a fantasy weapon, but the collective passion of nerds have made it as real as ever, and the Guinness folks give credibility to this build.

Continue reading “We Would Not Want To Be Stormtroopers Right Now”

Individual Neopixels Make Up This Lightsaber’s Blade

The lightsaber is an iconic weapon from the Star Wars franchise, designed in all sorts of shapes and colors. Several fan-made versions have been built as well, quite a few of which use the almost ubiquitous neopixel. [Tirenoth] decided to build his first lightsaber using a series of neopixels, but decided on a unique build method.

Instead of the usual strip of neopixels, [Tirenoth] chose to use a bunch of neopixels in the 5mm LED form-factor. [Tirenoth] soldered each LED’s 5v pins and GND pins to the same pins on the next, rotating each LED 180 degrees, building a tower of pixels. The data in and out pins are soldered to the next (and previous) LED as well. This allows the series of LEDs to be a bit more stable physically, and allows them to be stacked close together, one on top of the other.

To control the neopixels, a Proffieboard is used, an open-source lightsaber controller. The Proffieboard uses an STM32 microcontroller and allows you to hook up LEDs or neopixels as well as a speaker. Its open-source software allows the animation of the pixels and the playing of sounds. It’s designed specifically for lightsaber builds and is programmed via the Arduino IDE.

[Tirenoth] has some nice pictures of the build in process and, of course some nice pics of the final result. He suggests that the blade would be the first to break in battle, though. There’s been a few lightsaber builds over the years, like this lightsaber with rave mode, or this lightsaber made with real lasers.

via Reddit.

A Foggy Lightsaber Build

Lightsabers have enchanted audiences since their appearance in the very first Star Wars film in 1977. Unfortunately, George Lucas hasn’t shared the technology in the years since then with the broader public, so we’re left to subsist on pale imitations. This is just such a build.

The closest human analog to Jedi technology is the laser, and this build uses 8 of them in combination with two LEDs. They’re aimed to coincide at a fixed distance above the hilt. A CO2 bicycle inflater is then used to blow through an e-cigarette to create a fog. This makes the red lasers readily visible to the human eye.

This ersatz lightsaber does have its limitations – fast motion tends to scatter the fog, making it once again invisible, and it’s really at its best held in a vertical orientation. There’s also some divergence beyond the focused point. With that said, it does look somewhat impressive when held still, smouldering away.

Until we gain a better mastery of plasma physics, perhaps you can make do with this fire-based build? Video after the break.

[Thanks to qrp-gaijin for the tip!]

Continue reading “A Foggy Lightsaber Build”